Skip to main content
Log in

The role of dynamic absorption and polarization potentials in relativistic excitation of xenon

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Data on excitation of rare gases is mainly important in the study of lighting, plasma displays and lasers. From literature, cross sections data on electron impact excitation of low-lying resonance states of xenon atoms with both relativistic and non-relativistic computations often differ with available experimental data mostly at low and intermediate impact energies and at intermediate scattering angles. With this in view, we have applied relativistic effects in a fully relativistic distorted-wave born approximation approach to excitation of the lowest lying resonance states of a xenon target atom in a complex potential in order to solve the Dirac equations to obtain the free electron wavefunctions and corresponding excitation cross sections. Present differential cross sections (DCS) results from this study predict that absorption effects in the distortion potential generally have minimal effect on cross sections at impact energies below 50 eV, but then significantly improve these results in comparison with experiments as kinetic energy of the incident electron increases. Furthermore, it is evident that the energy dependent dynamic polarization potential adopted plays a major role in improving shapes of cross sections at low and near threshold impact energies, where other distorted-wave methods fail to give satisfactory results.

Graphical abstract

We have applied a fully relativistic distorted-wave (RDW) approach to inelastic excitation of the lowest J = 1 states of xenon in which a complex potential (SEPA = static (S), + exchange (SE), + polarization (SEP) and + absorption (SEPA)) is used to solve the Dirac equations to obtain electron initial and final wave functions \(\chi_{a}^{ + }\) and \(\chi_{b}^{ + }\) respectively). The transition matrix \(T_{a \to b}^{RDW} = \left\langle {\chi_{b}^{ - } \left| {V - U} \right|A\chi_{a}^{ + } } \right\rangle\) is then used to obtain the differential cross sections. Theoretical studies on excitation of xenon J  = 1 states [1,2,3] have not yet applied this approach. Experimental (Expt.) results are in bullets while calculations are in full and dotted lines. Present DCS results predict that the polarization potential plays a major role of improving cross sections at low and near excitation threshold while absorption does this above 50 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data analyzed and presented in this article are available from the corresponding author upon reasonable request.]

References

  1. N. Andreas, D. Michael, S. Hermann, P. Heinzwerner, J. Chem. Phys. 102, 8 (1995)

    Google Scholar 

  2. K. Bartschat, D.H. Madison, J. Phys. B 20, 5839 (1987)

    Article  ADS  Google Scholar 

  3. C.J. Bostock, C.J. Fontes, D.V. Fursa, H.L. Zhang, I. Bray, Phys. Rev. A. 88, 012711 (2013)

    Article  ADS  Google Scholar 

  4. C.F. Fischer, G. Gaigalas, P. Jonsson, J. Bieron. Comput. Phys. Commun. 237, 184 (2019)

    Article  ADS  Google Scholar 

  5. D. Filipovic, B. Marinkovic, V. Pejcev, L. Vuscovic, Phys. Rev. A 37, 356 (1988)

    Article  ADS  Google Scholar 

  6. C.J. Fontes, H.L. Zhang, Phys. Rev. A 76, 040703 (2007)

    Article  ADS  Google Scholar 

  7. J.B. Furness, I.E. McCarthy, J. Phys. B 6, 2280 (1973)

    Article  ADS  Google Scholar 

  8. I.P. Grant, Adv. Phys. 19, 747 (1970)

    Article  ADS  Google Scholar 

  9. Y. Itikawa, Phys. Rep. 143, 2 (1986)

    Article  Google Scholar 

  10. S. Kaur, R. Srivastava, R.P. McEachran, A.D. Stauffer, J. Phys. B 31, 157 (1998)

    Article  ADS  Google Scholar 

  11. S.P. Khare, K. Ashok, Vijayshri, J. Phys. B. 18, 1827 (1985)

    Article  ADS  Google Scholar 

  12. M. Khakoo, S. Trajmar, L.R. LeClair, I. Kanik, G. Csanak, C.J. Fontes, J. Phys. B 29, 3455 (1996)

    Article  ADS  Google Scholar 

  13. M. Khakoo, P. Vandeventer, J.G. Childers, I. Kanik, C.J. Fontes, K. Bartschat, V. Zeman, D.H. Madison, S. Saxena, R. Srivastava, A.D. Stauffer, J. Phys. B 37, 247 (2004)

    Article  ADS  Google Scholar 

  14. D.H. Madison, C.M. Maloney, J.B. Wang, J. Phys. B 31, 873 (1998)

    Article  ADS  Google Scholar 

  15. A.M. Marucha, P.K. Kariuki, J. Okumu, C.S. Singh, J. Phys. Commun. 5, 075011 (2021)

    Article  Google Scholar 

  16. A.M. Marucha, P.K. Kariuki, J. Okumu, C.S. Singh, Eur. Phys. J. D 75, 225 (2021)

    Article  ADS  Google Scholar 

  17. R.P. McEachran, A.D. Stauffer, J. Phys. B 19, 3523 (1986)

    Article  ADS  Google Scholar 

  18. S. Nakazaki, K.A. Berrington, W. Eissner, Y. Itikawa, J. Phys. B 30, 5805 (1997)

    Article  ADS  Google Scholar 

  19. H. Nishimura, A. Danjo and T. Matsuda. Proceedings of the 14th International Conference on Physics of Electronic and Atomic Collisions ( ed Coggiola, M. J. Huestic, D. L. and Saxon, R. P. (Amsterdam: North-Holland) Abstracts p 108 (1985)

  20. W.F. Perger, Z. Halabuka, D. Trautmann, Comput. Phys. Commun. 76, 250 (1993)

    Article  ADS  Google Scholar 

  21. K. Sharma, Acta. Phys. Pol. A 126, 3 (2014)

    Article  Google Scholar 

  22. G. Staszewska, W. Schwenke, G. Truhlar, Phys. Rev. A 29, 3078 (1984)

    Article  ADS  Google Scholar 

  23. T. Zuo, R.P. McEachran, A.D. Stauffer, J. Phys. B 24, 2853 (1991)

    Article  ADS  Google Scholar 

  24. T. Zuo, R.P. McEachran, A.D. Stauffer, J. Phys. B 25, 3393 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kenyatta University for partly supporting this research through the African Development Bank funds which were released in the year 2017 to various departments of the School of Pure and Applied Sciences. Furthermore we thank the National Research Fund Kenya for funding this research by giving funds for purchase of equipment.

Author information

Authors and Affiliations

Authors

Contributions

Alex M. Marucha, Peter K. Kariuki, John Okumu, and Chandra S. Singh contributed equally toward the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Alex M. Marucha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marucha, A.M., Kariuki, P.K., Okumu, J. et al. The role of dynamic absorption and polarization potentials in relativistic excitation of xenon. Eur. Phys. J. D 76, 80 (2022). https://doi.org/10.1140/epjd/s10053-022-00396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00396-5

Navigation