Skip to main content
Log in

Post-collisional interaction effects in the electron and positron impact ionization of neutral atoms

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of neutral atoms in coplanar asymmetric geometry. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions which cannot be separately detected in an experiment with a single projectile. In this paper, the role played by post-collisional interaction (pci) between the ejected electron and the scattered projectile is studied. \((e^-,2e^-)\) experimental results for atomic hydrogen where the role of pci is well-understood are considered, and it is shown that a classically corrected first Born approach gives better agreement with the shape and absolute size of the experimental data than either using the Gamov \(N_{e^-e^-}\) or the Ward–Macek \(M_{e^-e^-}\) correction factors. Predictions are presented for the TDCS for positron impact ionization of hydrogen. The insights gained from the hydrogen study are applied to the electron and positron impact ionization of argon.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: Data is available from the corresponding author on request.]

References

  1. C.T. Whelan, Fragmentation Processes: Topics in Atomic and Molecular Physics (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  2. G. Laricchia, S. Armitage, Á. Kővér, D.J. Murtagh, Advances in atomic, molecular, and optical. Physics 56, 1 (2008)

    Google Scholar 

  3. M. McGovern, D. Assafrão, J.R. Mohallem, C.T. Whelan, H.R.J. Walters, Phys. Rev. A 79(4), 042707 (2009)

    Article  ADS  Google Scholar 

  4. J. Gavin, O. G. deLucio, R. D. DuBois, Phys. Rev. A 95, 062703 (2017)

    Article  ADS  Google Scholar 

  5. RD DuBois, OG de Lucio. Atoms, 9(4), (2021). https://www.mdpi.com/2218-2004/9/4/78

  6. J. Botero, J.H. Macek, Phys. Rev. Lett. 68, 576 (1992)

    Article  ADS  Google Scholar 

  7. C.T. Whelan, R.J. Allan, J. Rasch, J. Röder, K. Jung, H. Ehrhardt, Phys. Rev. A 50, 4394 (1994)

    Article  ADS  Google Scholar 

  8. S.J. Ward, J.H. Macek, Phys. Rev. A 90, 062709 (2014)

    Article  ADS  Google Scholar 

  9. RI Campeanu, CT Whelan. Atoms, 9(2), (2021). https://www.mdpi.com/2218-2004/9/2/33

  10. Y.V. Popov, J.J. Benayoun, J. Phys. B 14, 3513 (1981)

    Article  ADS  Google Scholar 

  11. H Klar, A Franz, H Tenhagen. Z. Phys D, 1: 373, 186

  12. C T Whelan, R J Allan, H R J Walters, X Zhang. In C T Whelan, H R J Walters, A Lahmam-Bennani, and H Ehrhardt, editors, \((e,2e)\) & related processes, pages 33–74. Kluwer,Dordrecht, (1993)

  13. C.T. Whelan, R.J. Allan, H.R.J. Walters, J. Phys. IV 3, C6 (1993)

    Google Scholar 

  14. J. Röder, J. Rasch, K. Jung, C.T. Whelan, H. Ehrhardt, R.J. Allan, H.R.J. Walters, Phys. Rev. A 53, 225 (1994)

    Article  ADS  Google Scholar 

  15. D.H. Madison, R.V. Calhoun, W.N. Shelton, Phys. Rev. A 16, 552 (1977)

    Article  ADS  Google Scholar 

  16. J Rasch. PhD thesis, University of Cambridge, (1996)

  17. A. Burgess, C.T. Whelan, Comput. Phys. Commun. 47, 295 (1987)

    Article  ADS  Google Scholar 

  18. JB Furness, IE Mc Carthy (1973) J. Phys. B At. Mol. Phys., 6:2280

  19. M.E. Riley, D.G. Truhlar, J. Chem. Phys 63, 2182 (1975)

    Article  ADS  Google Scholar 

  20. J.M. Martinez, H.R.J. Walters, C.T. Whelan, J. Phys. B 41, 065202 (2008)

    Article  Google Scholar 

  21. B.H. Bransden, M.R.C. McDowell, C.J. Noble, T. Scott, J. Phys. B 9, 1301 (1976)

    Article  ADS  Google Scholar 

  22. E.P. Curran, H.R.J. Walters, J. Phys. B 20, 333 (1987)

    ADS  Google Scholar 

  23. D.A. Biava, K. Bartschat, H.P. Saha, D.H. Madison, J. Phys. B 35, 5121 (2002)

    Article  ADS  Google Scholar 

  24. M. Stevenson, G.J. Leighton, A. Crowe, K. Bartschat, O.K. Vorov, D.H. Madison, J. Phys. B 38, 433 (2005)

    Article  ADS  Google Scholar 

  25. E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974)

    Article  ADS  Google Scholar 

  26. R.I. Campeanu, H.R.J. Walters, C.T. Whelan, Phys. Rev. A 97, 062702 (2018)

    Article  ADS  Google Scholar 

  27. F.K. Miller, C.T. Whelan, H.R.J. Walters, Phys. Rev. A 91, 012706 (2015)

    Article  ADS  Google Scholar 

  28. M. Brauner, J.S. Briggs, H. Klar, J. Phys. B 22, 2265 (1989)

    Article  ADS  Google Scholar 

  29. M. Brauner, J.S. Briggs, J. Phys. B 19, L325 (1986)

    Article  ADS  Google Scholar 

  30. J. Berakdar, H. Klar, J. Phys. B 26, 3891 (1993)

    Article  ADS  Google Scholar 

  31. E.P. Curran, C.T. Whelan, H.R.J. Walters, J. Phys. B 24, L19 (1991)

  32. S.P. Lucey, J. Rasch, C.T. Whelan, Proc. Roy. Soc. A 455, 349 (1999)

    Article  ADS  Google Scholar 

  33. S.J. Ward, J.H. Macek, Phys. Rev. A 49, 1049 (1994)

    Article  ADS  Google Scholar 

  34. R.I. Campeanu, H.R.J. Walters, C.T. Whelan, Eur. Phys. J. D 69, 235 (2015)

    Article  ADS  Google Scholar 

  35. T. Rösel, J. Röder, L. Frost, K. Jung, H. Ehrhardt, S. Jones, D.H. Madison, Phys. Rev. A 46, 2539 (1992)

    Article  ADS  Google Scholar 

  36. H Ehrhardt, T Rösel. In C T Whelan, H R J Walters, A Lahmam-Bennani, and H Ehrhardt, editors, \((e,2e)\) & related processes, pages 76–82. Kluwer,Dordrecht, (1993)

  37. H. Ehrhardt, K. Jung, G. Knoth, P. Schlemmer, Z. Phys. D 1, 3 (1986)

    Article  ADS  Google Scholar 

  38. F W Byron Jr., C J Joachain, and B Piraux. J. Phys. B, At. Mol. Phys, 18:3203, 1985

  39. I. Bray, D.V. Fursa, A.S. Kadyrov, A.T. Stelbovics, A.S. Kheifets, A.M. Mukhamedzhanov, Phys. Rep. 520, 135–174 (2012)

    Article  ADS  Google Scholar 

  40. J Rasch, C T Whelan, R J Allan, and H R J Walters. In C T Whelan and H RJ Walters, editors, (Coincidence Studies of Electron and Photon Impact Ionization, pp 305–318. Plenum: New York, (1997)

  41. R D DuBois, J. Gavin, O G .de Lucio J. Phys. Conf. Ser., 488:072004 (2014)

  42. E. Clementi, D.L. Raimond, W.P. Reinhardt, J. Chem. Phys. 47, 1300–1307 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Science and Engineering Research Council of Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Both authors worked closely together during the entire project including the writing of this paper.

Corresponding author

Correspondence to Colm T. Whelan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campeanu, R.I., Whelan, C.T. Post-collisional interaction effects in the electron and positron impact ionization of neutral atoms. Eur. Phys. J. D 76, 69 (2022). https://doi.org/10.1140/epjd/s10053-022-00393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00393-8

Navigation