Skip to main content
Log in

Kink soliton dynamics for systems incorporating higher-order nonlinearity and dispersion

  • Regular Article – Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate the dynamic behavior of kink solitons in systems with quintic order nonlinear interaction and higher-order dispersion effects. Based on the nonlinear Schrödinger equation model incorporating higher-order dispersion and higher-order nonlinear interaction, we derive the analytical kink soliton solution of such system model based on the F-expansion method. We show the unique kink soliton features by the analytical formulation and typical graphic illustration. The theoretical results presented in this study can be used to guide the experimental observation of kink solitons in systems with higher-order dispersion and higher-order nonlinear interaction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There is no associated data in this study, our work is theoretical and analytical study of the corresponding theoretical physics model.]

References

  1. V.N. Serkin, A. Hasegawa, Transformations for a generalized variable-coefficient nonlinear Schrödinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. Phys. Rev. Lett. 85(3), 4502 (2000)

    Article  ADS  Google Scholar 

  2. V.N. Serkin, T.L. Belyaeva, Bright and dark solitary nonlinear Bloch waves in dispersion managed fiber systems and soliton lasers. Opt. Commun. 196(1–6), 159 (2001)

    Article  ADS  Google Scholar 

  3. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Nonautonomous solitons in external potential. Phys. Rev. Lett. 98(7), 074102 (2007)

    Article  ADS  Google Scholar 

  4. R.Y. Hao, R.C. Yang, L. Li, G.S. Zhou, Dark soliton solution for higher-order nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 281(1–3), 1256 (2008)

    Article  ADS  Google Scholar 

  5. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2007)

    MATH  Google Scholar 

  6. A.M. Wazwaz, New solitons and kink solutions for the Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1395–1404 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. B. Denardo, W. Denardo, S. Putterman, Observation of a kink soliton on the surface of a liquid. Phys. Rev. Lett. 64(13), 1518–1521 (1990)

    Article  ADS  Google Scholar 

  8. R.W. Hasse, A general method for the solution of nonlinear soliton and kink Schrodinger equations. Zeitschrift Fur Physik B Condensed Matter. 37, 83–87 (1980)

    ADS  MathSciNet  Google Scholar 

  9. S.K. Adhikari, Coupled Bose-Einstein condensate: collapse for attractive interaction. Phys. Rev. A. 63(4), 392–396 (2001)

    Article  Google Scholar 

  10. S.K. Adhikari, L. Salasnich, Nonlinear Schrödinger equation for a superfluid Bose gas from weak coupling to unitarity: study of vortices. Phys. Rev. A. 78, 043616 (2008)

  11. V.Y. Belashov, S.V. Vladimirov, Solitary waves in dispersive complex media: theory, simulation, applications Solitary Waves in Dispersive Complex Media. (Springer, Berlin, 2005)

    Book  MATH  Google Scholar 

  12. S. Zhang, J.M. Ba, Y.N. Sun, L. Dong, A Generalized (G’/G)-Expansion Method for the Nonlinear Schrödinger Equation with Variable Coefficients. Z. Naturforsch. 64a, 691–696 (2009)

    Article  ADS  Google Scholar 

  13. A.X. Zhang, J.K. Xue, Dynamics of bright/dark solitons in Bose-Einstein condensates with time-dependent scattering length and external potential. Chin. Phys. Lett. 25, 39 (2008)

  14. J.X. Fei, C.L. Zheng, Exact projective excitations of a generalized (3+ 1)-dimensional gross-Pitaevskii system with varying parameters. Chin. J. Phys. 51(2), 200 (2013)

    MathSciNet  Google Scholar 

  15. T.A. Davydova, Y.A. Zaliznyak, Schrödinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity. Phys. D. 156(3–4), 260–282 (2011)

    MATH  Google Scholar 

  16. A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973)

    Article  ADS  Google Scholar 

  17. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)

    Article  ADS  Google Scholar 

  18. R. Kohl, A. Biswas, D. Milovic, E. Zerrad, Optical soliton perturbation in a non-Kerr law media. Opt. Laser Technol. 40(4), 647–662 (2008)

    Article  ADS  Google Scholar 

  19. R. Kohl, D. Milovic, E. Zerrad, A. Biswas, Soliton perturbation theory for dispersion-managed optical fibers. J. Nonlinear Opt. Phys. 18(2), 227 (2009)

    Article  MATH  Google Scholar 

  20. Y. Zhou, M.L. Wang, Y.M. Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients, Phys. Lett. A. 30831 (2003)

  21. M.A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos Soliton. Fract. 31(1), 95 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. W. Qi, Z.X. Liang, Z.D. Zhang, The stability condition and collective excitation of a trapped Bose-Einstein condensate with higher-order interactions. J. Phys. B. 46(17), 175301 (2013)

    Article  ADS  Google Scholar 

  23. J. Yang, Nonlinear waves in integrable and nonintegrable systems (Society for Industrial and Applied Mathematics, Philadelphia, 2007), p. 168

    Google Scholar 

  24. M. Wang, X. Li, J. Zhang, The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A. 372(4), 417–423 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A. Shukla, Neeraj, P.K. Panigrahi, Kink-like Solitons in Quantum Droplet[J]. Journal of Physics B Atomic Molecular and Optical Physics. 54(16), 165301 (2021)

  26. M.K. Parit, G. Tyagi, D. Singh, P.K. Panigrahi, Supersolid behavior in one-dimensional self-trapped Bose-Einstein condensate. J. Phys. B Atomic Molecular Optical Phys. 54(10), 105001 (2021)

    Article  ADS  Google Scholar 

  27. T.S. Raju, C.N. Kumar, P.K. Panigrahi, Exact solitary wave solutions of the nonlinear Schr. J. Phys. A General Phys. 38(16), L271–L276 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (NSF) of China under Grant Nos. 11547024.

Author information

Authors and Affiliations

Authors

Contributions

YW: Conceptualization, Formal analysis, Methodology, Funding acquisition, Project administration, Writing—original draft. XZ: Formal analysis, Visulization, Writing—original draft. YG: Resources, Software. XL: Resources, Software. YJ: Investigation, Visualization. SZ: Supervision, Project administration,& editing.

Corresponding authors

Correspondence to Ying Wang or Shuyu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Guo, Y., Liu, X. et al. Kink soliton dynamics for systems incorporating higher-order nonlinearity and dispersion. Eur. Phys. J. D 76, 28 (2022). https://doi.org/10.1140/epjd/s10053-022-00354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00354-1

Navigation