Skip to main content
Log in

The quantum vortex states in extended Bose–Hubbard model: effects of lattice geometries, inter-particle interactions and spatial inhomogeneity

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the effects of lattice geometries, inter-particle interactions and spatial inhomogeneity due to harmonic trap potential on the quantum vortex states of strongly interacting bosons in rotating two-dimensional optical lattice. The system is modelled by an extended Bose–Hubbard Hamiltonian. Using the numerical exact diagonalization method, we show how the rotation introduces vortex states of different ground-state symmetries and the transition between these states at discrete rotation frequencies. We consider optical lattices of different lattice geometries and show how the lattice geometry plays crucial roles in determining the maximum number of vortex states as well as the general characteristics of these quantum vortex states, such as the average angular momentum, the current at the perimeter of the lattice, phase winding, the maximum lattice current and also the saturation of the current between the two neighbouring lattice sites. We show the dependence of the lattice current flow on the inter-particle interactions which also depend on the geometry of the lattice. We also consider the effects of the spatial inhomogeneity introduced by the presence of an additional confining harmonic trap potential. It is shown that the curvature of the trap potential and the position of the minimum of the trap potential with respect to the axis of rotation or the centre of the lattice has significant effects on the general characteristics of these vortex states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data used in the manuscript are produced from the numerical simulations by the authors. No data from any external sources are used.]

References

  1. Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, Daniel S. Fisher, Phys. Rev. B 40, 546 (1989)

  2. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  3. G. Arwas, A. Vardi, D. Cohen, Phys. Rev. A 89, 013601 (2014)

    Article  ADS  Google Scholar 

  4. C.K. Thomas, T.H. Barter, T.-H. Leung, M. Okano, G.-B. Jo, J. Guzman, I. Kimchi, A. Vishwanath, D.M. Stamper-Kurn, Phys. Rev. Lett. 119, 100402 (2017)

    Article  ADS  Google Scholar 

  5. G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014)

    Article  ADS  Google Scholar 

  6. Y. Kuno, T. Nakafuji, I. Ichinose, Phys. Rev. A 92, 063630 (2015)

    Article  ADS  Google Scholar 

  7. H.-C. Jiang, F. Liang, X. Cenke, Phys. Rev. B 86, 045129 (2012)

    Article  ADS  Google Scholar 

  8. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  9. G.G. Batrouni, V. Rousseau, R.T. Scalettar, M. Rigol, A. Muramatsu, P.J.H. Denteneer, M. Troyer, Phys. Rev. Lett. 89, 117203 (2002)

    Article  ADS  Google Scholar 

  10. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)

    Article  ADS  Google Scholar 

  11. P. Zin, J. Chwedenczuk, B. Oles, K. Sacha, M. Trippenbach, EPL (Europhysics Letters) 83, 64007 (2008)

    Article  ADS  Google Scholar 

  12. M. Khanore, B. Dey, in AIP Conference Proceedings 1665, 030033 (2015)

  13. Y. Kuno, K. Shimizu, I. Ichinose, Phys. Rev. A 95, 013607 (2017)

    Article  ADS  Google Scholar 

  14. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 82, 013620 (2010)

    Article  ADS  Google Scholar 

  15. M.W. Jack, M. Yamashita, Phys. Rev. A 71, 023610 (2005)

    Article  ADS  Google Scholar 

  16. M. Khanore, B. Dey, in AIP Conference Proceedings 1591, 139 (2014)

  17. W. Tschischik, M. Haque, Phys. Rev. A 91, 053607 (2015)

    Article  ADS  Google Scholar 

  18. M.J. Mark, E. Haller, K. Lauber, J.G. Danzl, A. Janisch, H.P. Büchler, A.J. Daley, H.-C. Nägerl, Phys. Rev. Lett. 108, 215302 (2012)

    Article  ADS  Google Scholar 

  19. T. Sowiński, R.W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein, Phys. Rev. A 92, 043615 (2015)

    Article  ADS  Google Scholar 

  20. T. Sowiński, Phys. Rev. A 85, 065601 (2012)

  21. A. Safavi-Naini, J. von Stecher, B. Capogrosso-Sansone, Seth T. Rittenhouse, Phys. Rev. Lett. 109, 135302 (2012)

  22. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

  23. Rajiv Bhat, M. Krämer, J. Cooper, M. J. Holland, Phys. Rev. A 76, 043601 (2007)

  24. T. Mithun, K. Porsezian, B. Dey, Phys. Rev. A 89, 053625 (2014)

    Article  ADS  Google Scholar 

  25. J. Cuevas, Boris A. Malomed, P. G. Kevrekidis, Phys. Rev. E 76, 046608 (2007)

  26. T. Mithun, K. Porsezian, B. Bishwajyoti DeyDey, Phys. Rev. A 93, 013620 (2016)

    Article  ADS  Google Scholar 

  27. T. Mithun, S. C. Ganguli, P. Raychaudhuri, B. Dey, EPL (Europhysics Letters) 123, 20004 (2018)

  28. S.C. Ganguli, H. Singh, I. Roy, V. Bagwe, D. Bala, A. Thamizhavel, P. Raychaudhuri, Phys. Rev. B 93, 144503 (2016)

    Article  ADS  Google Scholar 

  29. S.C. Ganguli, H. Singh, G. Saraswat, R. Ganguly, V. Bagwe, P. Shirage, A. Thamizhavel, P. Raychaudhuri, Sci. Rep. 5, 10613 (2015)

    Article  Google Scholar 

  30. W. Congjun, H. Chen, H. Jiang-piang, S.-C. Zhang, Phys. Rev. A 69, 043609 (2004)

    Article  ADS  Google Scholar 

  31. Rajiv Bhat, M. J. Holland, L. D. Carr, Phys. Rev. Lett. 96, 060405 (2006)

  32. R. Bhat, B. M. Peden, B. T. Seaman, M. Krämer, L. D. Carr, M. J, Holland, Phys. Rev. A 74, 063606 (2006)

  33. M. Brandon Peden, R. Bhat, M. Kräer, M.J. Holland. J. Phys. B: At. Mol. Opt. Phys. 40, 3725 (2007)

  34. D.S. Goldbaum, E.J. Mueller, Phys. Rev. A 77, 033629 (2008)

    Article  ADS  Google Scholar 

  35. P. Vignolo, R. Fazio, M.P. Tosi, Phys. Rev. A 76, 023616 (2007)

    Article  ADS  Google Scholar 

  36. C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Science 291, 2386 (2001)

    Article  ADS  Google Scholar 

  37. K. Burnett, M. Edwards, M. Shotter, C.W. Clark, J. Phys. B: At. Mol. Opt. Phys. 35, 1671 (2002)

    Article  ADS  Google Scholar 

  38. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Article  ADS  Google Scholar 

  39. R. Walters, G. Cotugno, T.H. Johnson, S.R. Clark, D. Jaksch, Phys. Rev. A 87, 043613 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

BD thanks Science and Engineering Research Board, Government of India for funding through research projects, Grants Nos. EMR/2016/002627 and CRG/2020/003787. BD also acknowledges Council of Scientific and Industrial Research, Government of India, for funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Bishwajyoti Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanore, M.P., Dey, B. The quantum vortex states in extended Bose–Hubbard model: effects of lattice geometries, inter-particle interactions and spatial inhomogeneity. Eur. Phys. J. D 76, 16 (2022). https://doi.org/10.1140/epjd/s10053-022-00350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00350-5

Navigation