Skip to main content
Log in

Vortex Lattice Formation in Spin–Orbit-Coupled Spin-2 Bose–Einstein Condensate Under Rotation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the vortex lattice configuration in a rotating spin orbit-coupled spin-2 Bose–Einstein condensate confined in a quasi-two-dimensional harmonic trap. By considering the interplay between rotation frequency, spin–orbit couplings, and interatomic interactions, we explore a variety of vortex lattice structures emerging as a ground state solution. Our study focuses on the combined effects of spin–orbit coupling and rotation, analyzed by using the variational method for the single-particle Hamiltonian. We observe that the interplay between rotation and Rashba spin–orbit coupling gives rise to different effective potentials for the bosons. Specifically, at higher rotation frequencies, isotropic spin–orbit coupling leads to an effective toroidal potential, while fully anisotropic spin–orbit coupling results in a symmetric double-well potential. To obtain these findings, we solve the five coupled Gross–Pitaevskii equations for the spin-2 BEC with spin–orbit coupling under rotation. Notably, we find that the antiferromagnetic, cyclic, and ferromagnetic phases exhibit similar behavior at higher rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.-J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  2. D.L. Campbell, R.M. Price, A. Putra, A. Valdés-Curiel, D. Trypogeorgos, I.B. Spielman, Nat. Commun. 7, 10897 (2016)

    Article  ADS  Google Scholar 

  3. X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.-F. Xu, L. You, R. Wang, Sci. Rep. 6, 18983 (2016)

    Article  ADS  Google Scholar 

  4. Z.F. Xu, R. Lü, L. You, Phys. Rev. A 83, 053602 (2011)

    Article  ADS  Google Scholar 

  5. T. Kawakami, T. Mizushima, K. Machida, Phys. Rev. A 84, 011607(R) (2011)

    Article  ADS  Google Scholar 

  6. Z.F. Xu, Y. Kawaguchi, L. You, M. Ueda, Phys. Rev. A 86, 033628 (2012)

    Article  ADS  Google Scholar 

  7. B.M. Anderson, I.B. Spielman, G. Juzeliūnas, Phys. Rev. Lett. 111, 125301 (2013)

    Article  ADS  Google Scholar 

  8. Z.-F. Xu, L. You, M. Ueda, Phys. Rev. Rev. A 87, 063634 (2013)

    Article  ADS  Google Scholar 

  9. X.-Q. Xu, J.H. Han, Phys. Rev. Lett. 107, 200401 (2011)

    Article  ADS  Google Scholar 

  10. J. Radić, T.A. Sedrakyan, I.B. Spielman, V. Galitski, Phys. Rev. A. 84, 063604 (2011)

    Article  ADS  Google Scholar 

  11. J. Radić, Spin–orbit-coupled quantum gases (2015) [Doctoral dissertation, Maryland University]

  12. X.-F. Zhou, J. Zhou, C. Wu, Phys. Rev. A 84, 063624 (2011)

    Article  ADS  Google Scholar 

  13. C.-F. Liu, H. Fan, Y.-C. Zhang, D.-S. Wang, W.-M. Liu, Phys. Rev. A 86, 053616 (2012)

    Article  ADS  Google Scholar 

  14. A. Aftalion, P. Mason, Phys. Rev. A 88, 023610 (2013)

    Article  ADS  Google Scholar 

  15. H. Wang, L. Wen, H. Yang, C. Shi, J. Li, J. Phys. B At. Mol. Opt. Phys. 50, 155301 (2017)

    Article  ADS  Google Scholar 

  16. C. Shi, L. Wen, Q. Wang, H. Yang, H. Wang, J. Phys. Soc. Jpn. 87, 094003 (2018)

    Article  ADS  Google Scholar 

  17. H. Yang, Q. Wang, N. Su, L. Wen, Eur. Phys. J. Plus 134, 589 (2019)

    Article  Google Scholar 

  18. Q.-B. Wang, H. Yang, N. Su, L.-H. Wen, Chin. Phys. B 29, 116701 (2020)

    Article  ADS  Google Scholar 

  19. J.-G. Wang, Y.-Q. Li, Results Phys. 17, 103099 (2020)

    Article  ADS  Google Scholar 

  20. C.-F. Liu, Y.-M. Yu, S.-C. Gou, W.-M. Liu, Phys. Rev. A. 87, 063630 (2013)

    Article  ADS  Google Scholar 

  21. Q. Zhao, H. Bi, Int. J. Theor. Phys. 60, 2778 (2021)

    Article  Google Scholar 

  22. S.K. Adhikari, J. Phys. Condens. Matter 33, 065404 (2021)

    Article  ADS  Google Scholar 

  23. P. Peng, G.-Q. Li, W.-L. Yang, Z.-Y. Yanga, Phys. Lett. A 382, 2493 (2018)

    Article  ADS  Google Scholar 

  24. X.-F. Zhang, B. Li, S.-G. Zhang, Laser Phys. 23, 105501 (2013)

    Article  ADS  Google Scholar 

  25. J. Li, X.-F. Zhang, W.-M. Liu, Ann. Phys. 87, 396 (2018)

    Google Scholar 

  26. P. Banger, R.K. Kumar, A. Roy, S. Gautam, J. Phys. Condens. Matter 35, 045401 (2023)

    Article  ADS  Google Scholar 

  27. G.-P. Chen, P. Tu, C.-B. Qiao, J.-X. Zhu, Q. Jia, X.-F. Zhang, Front. Phys. 9, 613 (2021)

    Google Scholar 

  28. H. Zhu, C.-F. Liu, D.-S. Wang, S.-G. Yin, L. Zhuang, W.-M. Liu, Phys. Rev. A 104, 053325 (2021)

    Article  ADS  Google Scholar 

  29. C.V. Ciobanu, S. Yip, T. Ho, Phys. Rev. A 61, 033607 (2000)

    Article  ADS  Google Scholar 

  30. A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Tatjana, I. Bloch, New J. Phys. 8, 152 (2006)

    Article  ADS  Google Scholar 

  31. Y. Kawaguchi, M. Ueda, Phys. Rep. 520, 253–381 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Goldman, G. Juzeliūnas, P. Öhberg, I.B. Spielman, Rep. Prog. Phys. 77, 126401 (2014)

    Article  ADS  Google Scholar 

  33. I.E. Rashba, Y.A. Bychkov, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  34. P. Kaur, A. Roy, S. Gautam, Comput. Phys. Commun. 259, 107671 (2021)

    Article  Google Scholar 

  35. P. Banger, P. Kaur, S. Gautam, Int. J. Mod. Phys. C 33(4), 2250046 (2022)

    Article  ADS  Google Scholar 

  36. R. Ravisankar, D. Vudragović, P. Muruganandam, A. Balaž, S.K. Adhikari, Comput. Phys. Commun. 259, 107657 (2021)

    Article  Google Scholar 

  37. P. Muruganandam, A. Balaž, S.K. Adhikari, Comput. Phys. Commun. 264, 107926 (2021)

    Article  Google Scholar 

  38. P. Banger, P. Kaur, A. Roy, S. Gautam, Comput. Phys. Commun. 279, 108442 (2022)

    Article  Google Scholar 

  39. P. Kaur, S. Gautam, S.K. Adhikari, Phys. Rev. A 105, 023303 (2022)

    Article  ADS  Google Scholar 

  40. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Sandeep Gautam for the fruitful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjeet Banger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The single-particle Hamiltonian for case I is

$$\begin{aligned} H_{\textrm{rot}}= \left( \frac{\hat{p}_x^2+ \hat{p}_y^2}{2} + \frac{x^2+y^2}{2}-\Omega L_z\right) \times {\mathbbm {1}}+\gamma _x S_x p_x, \end{aligned}$$
(17)

Under a unitary transformation the \(H_{\textrm{rot}}\) can be diagonalised, which has the eigenvalues

$$\begin{aligned} E_{\pm 2}(k_x,k_y)&=\frac{1}{2} \left[ k_x^2+k_y^2 \pm 4\gamma _xk_x\right] -\Omega (xk_y-yk_x), \end{aligned}$$
(18a)
$$\begin{aligned} E_{\pm 1}(k_x,k_y)&=\frac{1}{2} \left[ k_x^2+k_y^2 \pm 2\gamma _xk_x\right] -\Omega (xk_y-yk_x), \end{aligned}$$
(18b)
$$\begin{aligned} E_0(k_x,k_y)&= \frac{1}{2}(k_x^2+k_y^2)-\Omega (xk_y-yk_x), \end{aligned}$$
(18c)

The spectrum in Eqs. (18a)–(18b) around a minima can be described by a parabola of form \((k_x-k_{x\min })^2+(k_y-k_{y\mathrm min})^2+E_{\min }\), which describes the particle moving in an effective gauge field \((\textbf{A},\bar{\Phi })=(\{k_{x\min },k_{y\min },0\},E_{\min })\), where \(\textbf{A}\) and \(\bar{\Phi }\) are vector and scalar potentials, respectively [10, 11]. In the presence of rotation term \(k_{x\min }, k_{y\min }\) and \(E_{\min }\) become spatially dependent [10, 11]. Rewriting Eqs. (18a)–(18b) as

$$\begin{aligned} E_{\pm 2}(k_x,k_y)&=\frac{1}{2} \left[ (k_x\pm (2\gamma _x \pm y\Omega ))^2 +(k_y-x\Omega )^2\right] \nonumber \\&\quad +E_{\pm 2}^\textrm{min}(x,y), \end{aligned}$$
(19a)
$$\begin{aligned} E_{\pm 1}(k_x,k_y)&=\frac{1}{2} \left[ (k_x\pm (\gamma _x \pm y\Omega ))^2 +(k_y-x\Omega )^2\right] \nonumber \\&\quad +E_{\pm 1}^\textrm{min}(x,y), \end{aligned}$$
(19b)
$$\begin{aligned} E_0(k_x,k_y)&= \frac{1}{2}((k_x+y\Omega )^2+(k_y-x\Omega )^2)\nonumber \\&\quad +E_0^\textrm{min}(x,y), \end{aligned}$$
(19c)

where \(\textbf{A}_{\pm 2} = \mp (2\gamma _x\pm y\Omega ,x\Omega ),\quad \textbf{A}_{\pm 1} = \mp (\gamma _x\pm y\Omega ,x\Omega ),\quad \textbf{A}_0 = (-y\Omega ,x\Omega )\), and \(\bar{\Phi }_j = E_j^{\min }\) with (\(j = 0,\pm 1,\pm 2\)). The effective potentials, which are the sums of trapping and scalar potentials [10, 11], can now be written as

$$\begin{aligned} V_\textrm{eff}^{\pm 2}(x,y)&= \frac{1}{2}\left[ (1-\Omega ^2)(x^2+y^2)-4\gamma _x^2 \mp 4y \gamma _x\Omega \right] , \end{aligned}$$
(20a)
$$\begin{aligned} V_\textrm{eff}^{\pm 1}(x,y)&= \frac{1}{2}\left[ (1-\Omega ^2)(x^2+y^2)-\gamma _x^2\mp 2y \gamma _x\Omega \right] , \end{aligned}$$
(20b)
$$\begin{aligned} V_\textrm{eff}^0(x,y)&= \frac{1}{2}\left[ (1-\Omega ^2)(x^2+y^2)\right] . \end{aligned}$$
(20c)

From Eqs. (20a)–(20c), the effective potential curves correspond to \(V_{\textrm{eff}}^{\pm 2}\) are the lowest lying depending on the region.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banger, P. Vortex Lattice Formation in Spin–Orbit-Coupled Spin-2 Bose–Einstein Condensate Under Rotation. J Low Temp Phys 213, 155–170 (2023). https://doi.org/10.1007/s10909-023-03000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03000-1

Keywords

Navigation