Skip to main content
Log in

Elliptic vector loci of average electron velocity of electron swarm in constant-collision-frequency model gas under ac electric and dc magnetic fields crossed at arbitrary angles

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The analytic solution of the average electron velocity vector \(\mathbf {W}(t)\) of an electron swarm in gas under ac electric and dc magnetic fields (\(\mathbf {E}(t)\) and \(\mathbf {B}\), respectively) in a constant-collision-frequency model is extended to cover not only the known case of a right crossing angle (\(\mathbf {E}(t) \perp \mathbf {B}\)) but also the cases of arbitrary crossing angles (\(\mathbf {E}(t) \not \perp \mathbf {B}\)). The x, y, and z components of \(\mathbf {W}(t)\) are obtained as explicit formulae with the following parameters: the amplitude E of \(\mathbf {E}(t)\), the angle \(\theta \) between \(\mathbf {E}(t)\) and \(\mathbf {B}\), the angular frequency \(\omega _E\) of \(\mathbf {E}(t)\), the cyclotron angular frequency \(\omega _B\) (subject to the strength B of \(\mathbf {B}\)), and the electron collision frequency \(\nu \). A basic feature that \(\mathbf {W}(t)\) draws elliptic locus in velocity space is unchanged even under \(\mathbf {E}(t) \not \perp \mathbf {B}\), but the plane including the locus may tilt when \(\omega _E\), \(\omega _B\), or \(\nu \) varies. The derivation of \(\mathbf {W}(t)\) based on the analytic solution of single electron motion is detailed and fundamental behavior of the \(\mathbf {W}(t)\) loci is observed to understand the electron transport under \(\mathbf {E}(t) \times \mathbf {B}\) fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: ...].

Notes

  1. At this substitution, the initial phase \(\phi \) in the solution of \(\mathbf {v}^{\mathbf {B}}(t)\) becomes \(\omega _E t' + \phi \). However, the appearance of factors \(\sin (\omega _E t + \phi )\) and \(\cos (\omega _E t + \phi )\) in the components of \(\mathbf {v}^{\mathbf {B}}(t)\) in the integrand are unchanged because t and \(\phi \) in \(\omega _E t + \phi \) are replaced by \((t - t')\) and \((\omega _E t' + \phi )\), respectively, as \(\omega _E (t - t') + (\omega _E t' + \phi )\) and this returns to \(\omega _E t + \phi \).

  2. All terms include a common factor \(\omega _E\), which may cancel with that included in \(v_E\); \(v_E \omega _E\) is the amplitude of the electron acceleration as it has been denoted as a in Ref. [49].

  3. To obtain \(\mathbf {v}(t)\), only one step is necessary for the newborn subset, and \(n_{\varDelta t}\) steps are needed for the oldest subset.

References

  1. O. Tarvainen, S.X. Peng, New J. Phys. 18, 105008 (2016). https://doi.org/10.1088/1367-2630/18/10/105008

    Article  ADS  Google Scholar 

  2. N. Hayashi, T. Nakashima, H. Fujita, Jpn. J. Appl. Phys. 38, 4301 (1999). https://doi.org/10.1143/JJAP.38.4301

    Article  Google Scholar 

  3. T.A. Santhosh Kumar, S.K. Mattoo, R. Jha, Phys. Plasmas 11, 1735 (2004). https://doi.org/10.1063/1.1669391

  4. St. Kolev, St. Lishev, A. Shivarova, Kh. Tarnev, R. Wilhelm, Plasma Phys. Control. Fusion 49, 1349 (2007). https://doi.org/10.1088/0741-3335/49/9/001

    Article  ADS  Google Scholar 

  5. A. Aanesland, J. Bredin, P. Chabert, V. Godyak, Appl. Phys. Lett. 100, 044102 (2012). https://doi.org/10.1063/1.3680088

    Article  ADS  Google Scholar 

  6. S.K. Singh, P.K. Srivastava, L.M. Awasthi, S.K. Mattoo, A.K. Sanyasi, R. Singh, P.K. Kaw, Rev. Sci. Instrum. 85, 033507 (2014). https://doi.org/10.1063/1.4868514

    Article  ADS  Google Scholar 

  7. G. Fubiani, J.P. Boeuf, Plasma Sources Sci. Technol. 24, 055001 (2015). https://doi.org/10.1088/0963-0252/24/5/055001

    Article  ADS  Google Scholar 

  8. J.Y. Kim, W.-H. Cho, J.-J. Dang, S. Kim, Plasma Sources Sci. Technol. 25, 065019 (2016). https://doi.org/10.1088/0963-0252/25/6/065019

    Article  ADS  Google Scholar 

  9. J.Y. Kim, W.-H. Cho, J.-J. Dang, K.-J. Chung, Y.S. Hwang, Rev. Sci. Instrum. 87, 02B117 (2016). https://doi.org/10.1063/1.4933090

    Article  Google Scholar 

  10. O. Fukumasa, Y. Tauchi, S. Sakiyama, Jpn. J. Appl. Phys. 36, 4593 (1997). https://doi.org/10.1143/JJAP.36.4593

    Article  ADS  Google Scholar 

  11. M. Vural, R.P. Brinkmann, J. Phys. D Appl. Phys. 40, 510 (2007). https://doi.org/10.1088/0022-3727/40/2/027

    Article  ADS  Google Scholar 

  12. T. Uchida, Jpn. J. Appl. Phys. 33, L43 (1994). https://doi.org/10.1143/JJAP.33.L43

    Article  ADS  Google Scholar 

  13. H. Tsuboi, M. Itoh, M. Tanabe, T. Hayashi, T. Uchida, Jpn. J. Appl. Phys. 34, 2476 (1995). https://doi.org/10.1143/JJAP.34.2476

    Article  ADS  Google Scholar 

  14. H. Asakura, K. Takemura, Z. Yoshida, T. Uchida, Jpn. J. Appl. Phys. 36, 4493 (1997). https://doi.org/10.1143/JJAP.36.4493

    Article  ADS  Google Scholar 

  15. T. Uchida, J. Vac. Sci. Technol. A 16, 1529 (1998). https://doi.org/10.1116/1.581182

    Article  ADS  Google Scholar 

  16. W. Chen, M. Ito, T. Hayashi, T. Uchida, J. Vac. Sci. Technol. A 16, 1594 (1998). https://doi.org/10.1116/1.581193

    Article  ADS  Google Scholar 

  17. H. Sugawara, S. Ogino, Jpn. J. Appl. Phys. 55, 07LD05 (2016). https://doi.org/10.7567/JJAP.55.07LD05

    Article  Google Scholar 

  18. M. Tadokoro, H. Hirata, N. Nakano, Z.Lj. Petrović, T. Makabe, Phys. Rev. E 57, R43 (1998). https://doi.org/10.1103/PhysRevE.57.R43

  19. A.V. Vasenkov, M.J. Kushner, J. Appl. Phys. 94, 5522 (2003). https://doi.org/10.1063/1.1614428

    Article  ADS  Google Scholar 

  20. H. Takahashi, H. Sugawara, Jpn. J. Appl. Phys. 59, 036001 (2020). https://doi.org/10.35848/1347-4065/ab71d2

    Article  ADS  Google Scholar 

  21. T. Uchida, S. Hamaguchi, J. Phys. D Appl. Phys. 41, 083001 (2008). https://doi.org/10.1088/0022-3727/41/8/083001

    Article  Google Scholar 

  22. Z.Lj. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Rađenović, J. Phys. D Appl. Phys. 42, 194002 (2009). https://doi.org/10.1088/0022-3727/42/19/194002

  23. I. Adamovich et al., J. Phys. D Appl. Phys. 50, 323001 (2017). https://doi.org/10.1088/1361-6463/aa76f5

    Article  Google Scholar 

  24. A. Bogaerts, E. Bultinck, I. Kolev, L. Schwaederlé, K. Van Aeken, G. Buyle, D. Depla, J. Phys. D Appl. Phys. 42, 194018 (2009). https://doi.org/10.1088/0022-3727/42/19/194018

    Article  ADS  Google Scholar 

  25. K. Kamimura, K. Iyanagi, N. Nakano, T. Makabe, Jpn. J. Appl. Phys. 38, 4429 (1999). https://doi.org/10.1143/JJAP.38.4429

    Article  ADS  Google Scholar 

  26. G.R. Govinda Raju, M.S. Dincer, IEEE Trans. Plasma Sci. 18, 819 (1990). https://doi.org/10.1109/27.62348

    Article  ADS  Google Scholar 

  27. M.S. Dincer, A. Gokmen, J. Phys. D Appl. Phys. 25, 942 (1992). https://doi.org/10.1088/0022-3727/25/6/007

    Article  ADS  Google Scholar 

  28. M.S. Dincer, J. Phys. D Appl. Phys. 26, 1427 (1993). https://doi.org/10.1088/0022-3727/26/9/013

    Article  ADS  Google Scholar 

  29. N. Shimura, T. Makabe, Appl. Phys. Lett. 62, 678 (1993). https://doi.org/10.1063/1.108837

    Article  ADS  Google Scholar 

  30. K.F. Ness, Phys. Rev. E 47, 327 (1993). https://doi.org/10.1103/PhysRevE.47.327

    Article  ADS  Google Scholar 

  31. K.F. Ness, J. Phys. D Appl. Phys. 27, 1848 (1994). https://doi.org/10.1088/0022-3727/27/9/007

    Article  ADS  Google Scholar 

  32. B. Li, R.D. White, R.E. Robson, K.F. Ness, Ann. Phys. 292, 179 (2001). https://doi.org/10.1006/aphy.2001.6171

    Article  ADS  Google Scholar 

  33. R.D. White, K.F. Ness, R.E. Robson, J. Phys. D Appl. Phys. 32, 1842 (1999). https://doi.org/10.1088/0022-3727/32/15/312

    Article  ADS  Google Scholar 

  34. R.D. White, K.F. Ness, R.E. Robson, B. Li, Phys. Rev. E 60, 2231 (1999). https://doi.org/10.1103/PhysRevE.60.2231

    Article  ADS  Google Scholar 

  35. R.D. White, R.E. Robson, K.F. Ness, J. Phys. D Appl. Phys. 34, 2205 (2001). https://doi.org/10.1088/0022-3727/34/14/316

    Article  ADS  Google Scholar 

  36. R.D. White, R.E. Robson, K.F. Ness, T. Makabe, J. Phys. D Appl. Phys. 38, 997 (2005). https://doi.org/10.1088/0022-3727/38/7/006

    Article  ADS  Google Scholar 

  37. S. Dujko, R.D. White, K.F. Ness, Z.Lj. Petrović, R.E. Robson, J. Phys. D Appl. Phys. 39, 4788 (2006). https://doi.org/10.1088/0022-3727/39/22/009

  38. S. Dujko, R.D. White, Z.Lj. Petrović, R.E. Robson, Phys. Rev. E 81, 046403 (2010). https://doi.org/10.1103/PhysRevE.81.046403

  39. S. Dujko, R.D. White, Z.Lj. Petrović, R.E. Robson, Plasma Sources Sci. Technol. 20, 024013 (2011). https://doi.org/10.1088/0963-0252/20/2/024013

  40. R.D. White, K.F. Ness, R.E. Robson, Appl. Surf. Sci. 192, 26 (2002). https://doi.org/10.1016/S0169-4332(02)00019-3

    Article  ADS  Google Scholar 

  41. Z.M. Raspopović, S. Dujko, T. Makabe, Z.Lj. Petrović, Plasma Sources Sci. Technol. 14, 293 (2005). https://doi.org/10.1088/0963-0252/14/2/010

  42. O. Šašić, S. Dujko, Z.Lj. Petrović, T. Makabe, Jpn. J. Appl. Phys. 46, 3560 (2007). https://doi.org/10.1143/JJAP.46.3560

  43. R.D. White, S. Dujko, K.F. Ness, R.E. Robson, Z. Raspopović, Z.Lj. Petrović, J. Phys. D Appl. Phys. 41, 025206 (2008). https://doi.org/10.1088/0022-3727/41/2/025206

  44. S. Dujko, D. Bošnjaković, R.D. White, Z.Lj. Petrović, Plasma Sources Sci. Technol. 24(2015). https://doi.org/10.1088/0963-0252/24/5/054006

  45. S. Dujko, R.D. White, Z.Lj. Petrović, IEEE Trans. Plasma Sci. 39, 2560 (2011). https://doi.org/10.1109/TPS.2011.2150246

  46. Y. Nakamura, M. Kurachi, J. Phys. D Appl. Phys. 21, 718 (1988). https://doi.org/10.1088/0022-3727/21/5/008

    Article  ADS  Google Scholar 

  47. T. Sato, H. Sugawara, in Proceedings of XXXIV International Conference on Phenomena in Ionized Gases, 10th International Conference on Reactive Plasmas, 37th Symposium on Plasma Processing, and 32nd Symposium on Plasma Science for Materials, Sapporo, Japan, 2019, PO18AM-003

  48. H. Sugawara, Jpn. J. Appl. Phys. 58, 108002 (2019). https://doi.org/10.7567/1347-4065/ab3e5d

    Article  ADS  Google Scholar 

  49. H. Sugawara, in Bulletin of the American Physical Society, 72nd Annual Gaseous Electronics Conference, College Station, Texas, USA, 2019, FT1.00064

  50. H. Sugawara, T. Yahata, A. Oda, Y. Sakai, J. Phys. D Appl. Phys. 33, 1191 (2000). https://doi.org/10.1088/0022-3727/33/10/309

    Article  ADS  Google Scholar 

  51. Y. Nakata, T. Sato, H. Sugawara, IEEE Trans. Plasma Sci. 49, 83 (2021). https://doi.org/10.1109/TPS.2020.3010315

    Article  ADS  Google Scholar 

  52. M. Hayashi, S. Ushiroda, J. Chem. Phys. 78, 2621 (1983). https://doi.org/10.1063/1.445019

    Article  ADS  Google Scholar 

  53. M. Hayashi, T. Nimura, J. Appl. Phys. 54, 4879 (1983). https://doi.org/10.1063/1.332797

    Article  ADS  Google Scholar 

  54. H. Sugawara, Y. Nakata, Book of Abstracts POSMOL 2021 at-present: XXII International Symposium on Electron-Molecule Collisions and Swarms, The University of Notre Dame, Indiana, USA, 2021, p. 73, No. 41. https://sites.nd.edu/posmol2021conference/

  55. K. Satoh, Y. Ohmori, Y. Sakai, H. Tagashira, Trans. IEE Jpn. A 111, 198 (1991) https://doi.org/10.1541/ieejfms1990.111.3_198 [in Japanese]

Download references

Acknowledgements

This work was supported by KAKENHI Grant No. JP19K03780 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

H. S. organized this work, derived the theoretical formulae, performed computations, and wrote the manuscript. Y. N. participated in verifying the formulae and editing the manuscript. Both authors discussed the results and contributed to the final article.

Corresponding author

Correspondence to Hirotake Sugawara.

Additional information

Work supported by KAKENHI Grant JP19K03780 from the Japan Society for the Promotion of Science.

Appendices

Appendix A: Coordinate conversion between the \(\mathbf {E}\)-fixed and the \(\mathbf {B}\)-fixed systems

When vectors \((x^{\mathbf {E}}, y^{\mathbf {E}}, z^{\mathbf {E}})\) in the \(\mathbf {E}\)-fixed system and \((x^{\mathbf {B}}, y^{\mathbf {B}}, z^{\mathbf {B}})\) in the \(\mathbf {B}\)-fixed system are equivalent to each other with respect to the direction relative to \(\mathbf {E}\) and \(\mathbf {B}\), the components of one can be obtained from those of the other by the following relations representing rotations around the y-axis by angles \(\pm (\pi /2 - \theta )\):

$$\begin{aligned}&\left\{ \begin{array}{l} x^{\mathbf {B}} = x^{\mathbf {E}} \sin \theta - z^{\mathbf {E}} \cos \theta \\ y^{\mathbf {B}} = y^{\mathbf {E}} \\ z^{\mathbf {B}} = x^{\mathbf {E}} \cos \theta + z^{\mathbf {E}} \sin \theta \end{array} \right. , \end{aligned}$$
(A.1)
$$\begin{aligned}&\left\{ \begin{array}{l} x^{\mathbf {E}} = x^{\mathbf {B}} \sin \theta + z^{\mathbf {B}} \cos \theta \\ y^{\mathbf {E}} = y^{\mathbf {B}} \\ z^{\mathbf {E}} = - x^{\mathbf {B}} \cos \theta + z^{\mathbf {B}} \sin \theta \end{array} \right. . \end{aligned}$$
(A.2)

Appendix B: \(\mathbf {v}^{\mathbf {B}}(t)\) in the \(\mathbf {B}\)-fixed system

Let the initial electron velocity at \(t = 0\) be \(\mathbf {v}^{\mathbf {B}}(0) = \mathbf {v}_0^{\mathbf {B}} = (v_{x0}^{\mathbf {B}}, v_{y0}^{\mathbf {B}}, v_{z0}^{\mathbf {B}})\). In non-ECR condition \(\omega _E \not = \omega _B\), an analytic solution of (5) for \(\mathbf {v}^{\mathbf {B}}(t)\) is

$$\begin{aligned} v_x^{\mathbf {B}}= & {} \left( - \frac{\omega _E^2}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos \phi + v_{x0}^{\mathbf {B}} \right) \cos \omega _B t \nonumber \\&+ \left( + \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin \theta \sin \phi - v_{y0}^{\mathbf {B}} \right) \sin \omega _B t \nonumber \\&+ \frac{\omega _E^2}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos (\omega _E t + \phi ), \end{aligned}$$
(B.3)
$$\begin{aligned} v_y^{\mathbf {B}}= & {} \left( - \frac{\omega _E^2}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos \phi + v_{x0}^{\mathbf {B}} \right) \sin \omega _B t \nonumber \\&+ \left( - \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin \theta \sin \phi + v_{y0}^{\mathbf {B}} \right) \cos \omega _B t \nonumber \\&+ \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin \theta \sin (\omega _E t + \phi ), \end{aligned}$$
(B.4)
$$\begin{aligned} v_z^{\mathbf {B}}= & {} v_E \cos \theta \cos (\omega _E t + \phi ) - v_E \cos \theta \cos \phi + v_{z0}^{\mathbf {B}}.\nonumber \\ \end{aligned}$$
(B.5)

In the ECR condition \(\omega _E = \omega _B \equiv \omega \),

$$\begin{aligned} v_x^{\mathbf {B}}= & {} \left( - \frac{1}{2} v_E \sin \theta \sin \phi \cos \phi - \frac{1}{2} \omega t v_E \sin \theta \right. \nonumber \\&\left. + v_{x0}^{\mathbf {B}} \sin \phi - v_{y0}^{\mathbf {B}} \cos \phi \right) \sin (\omega t + \phi ) \nonumber \\&+ \left( + \frac{1}{2} v_E \sin \theta \sin ^2 \phi + v_{x0}^{\mathbf {B}} \cos \phi + v_{y0}^{\mathbf {B}} \sin \phi \right) \nonumber \\&\qquad \times \cos (\omega t + \phi ), \end{aligned}$$
(B.6)
$$\begin{aligned} v_y^{\mathbf {B}}= & {} \left( + \frac{1}{2} v_E \sin \theta \sin \phi \cos \phi + \frac{1}{2} \omega t v_E \sin \theta \right. \nonumber \\&\left. - v_{x0}^{\mathbf {B}} \sin \phi + v_{y0}^{\mathbf {B}} \cos \phi \right) \cos (\omega t + \phi ) \nonumber \\&+ \left( - \frac{1}{2} v_E \sin \theta \cos ^2 \phi + v_{x0}^{\mathbf {B}} \cos \phi + v_{y0}^{\mathbf {B}} \sin \phi \right) \nonumber \\&\qquad \times \sin (\omega t + \phi ), \end{aligned}$$
(B.7)
$$\begin{aligned} v_z^{\mathbf {B}}= & {} v_E \cos \theta \cos (\omega t + \phi ) - v_E \cos \theta \cos \phi + v_{z0}^{\mathbf {B}}.\nonumber \\ \end{aligned}$$
(B.8)

Appendix C: \(\mathbf {v}^{\mathbf {E}}(t)\) in the \(\mathbf {E}\)-fixed system

With \(\mathbf {v}^{\mathbf {E}}(0) = \mathbf {v}_0^{\mathbf {E}} = (v_{x0}^{\mathbf {E}}, v_{y0}^{\mathbf {E}}, v_{z0}^{\mathbf {E}})\), analytic solution of (5) for \(\mathbf {v}^{\mathbf {E}}(t)\) in the non-ECR condition \(\omega _E \not = \omega _B\) is

$$\begin{aligned} v_x^{\mathbf {E}}= & {} \left( - \frac{\omega _E^2}{\omega _E^2 - \omega _B^2} v_E \sin ^2 \theta \cos \phi \right. \nonumber \\&\left. + v_{x0}^{\mathbf {E}} \sin ^2 \theta - v_{z0}^{\mathbf {E}} \sin \theta \cos \theta \right) \cos \omega _B t \nonumber \\&+ \left( + \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin ^2 \theta \sin \phi - v_{y0}^{\mathbf {E}} \sin \theta \right) \nonumber \\&\qquad \times \sin \omega _B t \nonumber \\&+ \left( 1 + \frac{\omega _B^2}{\omega _E^2 - \omega _B^2} \sin ^2 \theta \right) v_E \cos (\omega _E t + \phi ) \nonumber \\&- v_E \cos ^2 \theta \cos \phi + v_{x0}^{\mathbf {E}} \cos ^2 \theta + v_{z0}^{\mathbf {E}} \sin \theta \cos \theta , \nonumber \\ \end{aligned}$$
(C.9)
$$\begin{aligned} v_y^{\mathbf {E}}= & {} \left( - \frac{\omega _E^2}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos \phi + v_{x0}^{\mathbf {E}} \sin \theta - v_{z0}^{\mathbf {E}} \cos \theta \right) \nonumber \\&\qquad \times \sin \omega _B t \nonumber \\&+ \left( - \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin \theta \sin \phi + v_{y0}^{\mathbf {E}} \right) \cos \omega _B t \nonumber \\&+ \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin \theta \sin (\omega _E t + \phi ), \end{aligned}$$
(C.10)
$$\begin{aligned} v_z^{\mathbf {E}}= & {} \left( + \frac{\omega _E^2}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos \theta \cos \phi \right. \nonumber \\&\left. - v_{x0}^{\mathbf {E}} \sin \theta \cos \theta + v_{z0}^{\mathbf {E}} \cos ^2 \theta \right) \cos \omega _B t \nonumber \\&+ \left( - \frac{\omega _E \omega _B}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos \theta \sin \phi + v_{y0}^{\mathbf {E}} \cos \theta \right) \nonumber \\&\qquad \times \sin \omega _B t \nonumber \\&- \frac{\omega _B^2}{\omega _E^2 - \omega _B^2} v_E \sin \theta \cos \theta \cos (\omega _E t + \phi ) \nonumber \\&- v_E \sin \theta \cos \theta \cos \phi + v_{x0}^{\mathbf {E}} \sin \theta \cos \theta + v_{z0}^{\mathbf {E}} \sin ^2 \theta .\nonumber \\ \end{aligned}$$
(C.11)

In the ECR condition \(\omega _E = \omega _B \equiv \omega \),

$$\begin{aligned} v_x^{\mathbf {E}}= & {} \left( + v_{x0}^{\mathbf {E}} \sin \theta \cos \phi + v_{y0}^{\mathbf {E}} \sin \phi - v_{z0}^{\mathbf {E}} \cos \theta \cos \phi \right) \nonumber \\&\qquad \times \sin \theta \cos (\omega t + \phi ) \nonumber \\&+ \frac{1}{2} v_E \left( 2 \cos ^2 \theta + \sin ^2 \theta \sin ^2 \phi \right) \cos (\omega t + \phi ) \nonumber \\&+ \bigg ( - \frac{1}{2} v_E \sin \theta \sin \phi \cos \phi + v_{x0}^{\mathbf {E}} \sin \theta \sin \phi \nonumber \\&- v_{y0}^{\mathbf {E}} \cos \phi - v_{z0}^{\mathbf {E}} \cos \theta \sin \phi \bigg ) \sin \theta \sin (\omega t + \phi ) \nonumber \\&- \frac{1}{2} \omega t v_E \sin ^2 \theta \sin (\omega t + \phi ) \nonumber \\&- v_E \cos ^2 \theta \cos \phi + v_{x0}^{\mathbf {E}} \cos ^2 \theta + v_{z0}^{\mathbf {E}} \sin \theta \cos \theta , \nonumber \\ \end{aligned}$$
(C.12)
$$\begin{aligned} v_y^{\mathbf {E}}= & {} \bigg ( - \frac{1}{2} v_E \sin \theta \cos ^2 \phi + v_{x0}^{\mathbf {E}} \sin \theta \cos \phi \nonumber \\&+ v_{y0}^{\mathbf {E}} \sin \phi - v_{z0}^{\mathbf {E}} \cos \theta \cos \phi \bigg ) \sin (\omega t + \phi ) \nonumber \\&+ \bigg ( + \frac{1}{2} v_E \sin \theta \sin \phi \cos \phi - v_{x0}^{\mathbf {E}} \sin \theta \sin \phi \nonumber \\&+ v_{y0}^{\mathbf {E}} \cos \phi + v_{z0}^{\mathbf {E}} \cos \theta \sin \phi \bigg ) \cos (\omega t + \phi ) \nonumber \\&+ \frac{1}{2} \omega t v_E \sin \theta \cos (\omega t + \phi ), \end{aligned}$$
(C.13)
$$\begin{aligned} v_z^{\mathbf {E}}= & {} \bigg ( + \frac{1}{2} v_E \sin \theta (1 + \cos ^2 \phi ) - v_{x0}^{\mathbf {E}} \sin \theta \cos \phi \nonumber \\&- v_{y0}^{\mathbf {E}} \sin \phi + v_{z0}^{\mathbf {E}} \cos \theta \cos \phi \bigg ) \cos \theta \cos (\omega t + \phi ) \nonumber \\&+ \bigg ( + \frac{1}{2} v_E \sin \theta \sin \phi \cos \phi - v_{x0}^{\mathbf {E}} \sin \theta \sin \phi \nonumber \\&+ v_{y0}^{\mathbf {E}} \cos \phi + v_{z0}^{\mathbf {E}} \cos \theta \sin \phi \bigg ) \cos \theta \sin (\omega t + \phi ) \nonumber \\&+ \frac{1}{2} \omega t v_E \sin \theta \cos \theta \sin (\omega t + \phi ) \nonumber \\&- v_E \sin \theta \cos \theta \cos \phi + v_{x0}^{\mathbf {E}} \sin \theta \cos \theta + v_{z0}^{\mathbf {E}} \sin ^2 \theta .\nonumber \\ \end{aligned}$$
(C.14)

Both of these ECR and non-ECR solutions are convertible between the \(\mathbf {B}\)-fixed and the \(\mathbf {E}\)-fixed systems with relations (A.1) and (A.2).

Appendix D: Acceleration acting on electrons in the \(\mathbf {B}\)-fixed system

In the \(\mathbf {B}\)-fixed system, the equation of motion (5) for an electron becomes

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} v_x^{\mathbf {B}}= & {} - \frac{e B}{m} v_y^{\mathbf {B}} - \frac{e E}{m} \sin \theta \sin (\omega _E t + \phi ), \qquad \end{aligned}$$
(D.15)
$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} v_y^{\mathbf {B}}= & {} \frac{e B}{m} v_x^{\mathbf {B}}, \end{aligned}$$
(D.16)
$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} v_z^{\mathbf {B}}= & {} - \frac{e E}{m} \cos \theta \sin (\omega _E t + \phi ). \end{aligned}$$
(D.17)

We obtain the following relations:

$$\begin{aligned}&\left( \frac{\mathrm{d}}{\mathrm{d}t} v_x^{\mathbf {B}}, \frac{\mathrm{d}}{\mathrm{d}t} v_y^{\mathbf {B}}, \frac{\mathrm{d}}{\mathrm{d}t} v_z^{\mathbf {B}} \right) \nonumber \\&\quad \cdot \left( v_x^{\mathbf {B}}, v_y^{\mathbf {B}} + \frac{E}{B} \sin \theta \sin (\omega _E t + \phi ), 0 \right) = 0, \end{aligned}$$
(D.18)
$$\begin{aligned}&\sqrt{ \left( \frac{\mathrm{d}}{\mathrm{d}t} v_x^{\mathbf {B}} \right) ^2 + \left( \frac{\mathrm{d}}{\mathrm{d}t} v_y^{\mathbf {B}} \right) ^2} \nonumber \\&\quad = \frac{e B}{m} \sqrt{ \left( v_x^{\mathbf {B}} \right) ^2 + \left( v_y^{\mathbf {B}} + \frac{E}{B} \sin \theta \sin (\omega _E t + \phi ) \right) ^2 }. \nonumber \\ \end{aligned}$$
(D.19)

Equation (D.18), which gives the inner product between two vectors, represents that the instantaneous acceleration acting on an electron having a velocity \(\mathbf {v}^{\mathbf {B}} = (v_x^{\mathbf {B}}, v_y^{\mathbf {B}}, v_z^{\mathbf {B}})\) is always perpendicular to its position vector relative to a point \((0, - (E/B) \sin \theta \sin (\omega _E t + \phi ), v_z^{\mathbf {B}})\). This point is on a central axis of rotation C represented as \(v_x = 0\) and \(v_y = - (E/B) \sin \theta \sin (\omega _E t + \phi )\). C is parallel to the \(v_z\)-axis, and moves temporally up and down across the origin O of velocity space (see Fig. 5). Equation (D.19) represents that the acceleration is proportional to the distance of \(\mathbf {v}^{\mathbf {B}}\) from C and that the angular frequency \(\omega _B = e B/m\) of the rotation is constant irrespective of \(\mathbf {v}^{\mathbf {B}}\). The acceleration for \(v_z^{\mathbf {B}}\) induces a translational shift along the \(v_z\)-axis (i.e. along C) in velocity space because \(\mathrm{d}v_z^{\mathbf {B}}/\mathrm{d}t\) is equal for all electrons.

In consequence, the infinitesimal motion of the electrons in velocity space by the instantaneous acceleration is helical; i.e. a composition of the rotation around C and the parallel shift along C. The shape of the EVDF of an electron swarm subset remains isotropic around its center in this acceleration.

Fig. 5
figure 5

Schematic of electron acceleration under \(\mathbf {E}(t) = (E \sin \theta \sin (\omega _E t + \phi ), 0, E \cos \theta \sin (\omega _E t + \phi ))\) and \(\mathbf {B} = (0, 0, B)\) projected to the \(v_x^{\mathbf {B}} v_y^{\mathbf {B}}\)-plane in velocity space. The instantaneous direction of acceleration \((\mathrm{d}v_x^{\mathbf {B}}/\mathrm{d}t, \mathrm{d}v_y^{\mathbf {B}}/\mathrm{d}t)\) (broken arrows) acting on electrons with velocity \(\mathbf {v}^{\mathbf {B}}\) (thick arrows) is rotational around a central axis C: \((v_x^{\mathbf {B}}, v_y^{\mathbf {B}}) = (0, -(E/B) \sin \theta \sin (\omega _E t + \phi ))\) (full circle)

Appendix E: Details on electron collision cross sections of CCF model gas

The CCF model gas used for the Monte Carlo simulations has the following electron collision cross sections [55], where \(q_\mathrm{el}\) is for elastic collision, \(q_\mathrm{inel,1}\) and \(q_\mathrm{inel,2}\) are for inelastic collisions with loss energies of 10 and 15 eV, respectively, and \(\varepsilon _\mathrm{1eV} = 1\) eV:

$$\begin{aligned} q_\mathrm{total}(\varepsilon )= & {} q_0/\sqrt{\varepsilon /\varepsilon _\mathrm{1eV}}, \end{aligned}$$
(E.20)
$$\begin{aligned} q_0= & {} 4.0 \times 10^{-19} \text{ m}^2, \end{aligned}$$
(E.21)
$$\begin{aligned} q_\mathrm{inel,1}(\varepsilon )= & {} \left\{ \!\! \begin{array}{llll} 0 &{} \text{ for } \varepsilon \le 10\,\text{ eV } \\ &{} q_1 [1 - \exp (-0.25 \times \varepsilon /\varepsilon _\mathrm{1eV} ) ]^{10} \\ &{} \;\; \times \exp [-0.01712 \times (\varepsilon /\varepsilon _\mathrm{1eV} - 10) ] \\ &{} \text{ for } 10 \text{ eV } < \varepsilon \le 300\,\text{ eV } \\ &{}q_1 \exp [-0.01712 \times (\varepsilon /\varepsilon _\mathrm{1eV} - 10) ] \\ &{}\text{ for } \varepsilon > 300\,\text{ eV } \end{array} \right. \!\!\! , \nonumber \\\end{aligned}$$
(E.22)
$$\begin{aligned} q_1= & {} 1.5 \times 10^{-20} \text{ m}^2, \end{aligned}$$
(E.23)
$$\begin{aligned} q_\mathrm{inel,2}(\varepsilon )= & {} \left\{ \!\! \begin{array}{lllll} 0 &{} \text{ for } \varepsilon \le 15\,\text{ eV } \\ &{} q_2 \{ 1 - \exp [ -(\varepsilon /\varepsilon _\mathrm{1eV})^{0.1} ] \}^6 \\ &{} \;\; \times \exp [ -0.0015 \times (\varepsilon /\varepsilon _\mathrm{1eV} - 15) ] \\ &{} \text{ for } 15 \text{ eV } < \varepsilon \le 500\,\text{ eV } \\ &{} q_2 \exp [ -0.0015 \times (\varepsilon /\varepsilon _\mathrm{1eV} - 15) ] \\ &{} \text{ for }\, \varepsilon > 500\,\text{ eV } \end{array} \right. \!\!\! ,\nonumber \\ \end{aligned}$$
(E.24)
$$\begin{aligned} q_2= & {} 2.0 \times 10^{-20} \text{ m}^2, \end{aligned}$$
(E.25)
$$\begin{aligned} q_\mathrm{el}(\varepsilon )= & {} q_\mathrm{total} (\varepsilon ) - q_\mathrm{inel,1}(\varepsilon ) - q_{\mathrm{inel,2}}(\varepsilon ). \end{aligned}$$
(E.26)

The original \(q_\mathrm{inel,2}\) [55] is an ionization cross section, but it is treated as an excitation cross section in this work when the electron-conservative case is examined. In the demonstration of the electron-nonconservative case, \(q_\mathrm{inel,2}\) is restored to be the ionization cross section. The residual energy after the production of a secondary electron by a primary electron is divided into two portions to be assigned to the two electrons at a ratio \(\delta : (1 - \delta )\) with an energy division ratio \(\delta \), and \(\delta \) is assumed to be equiprobable in a range \(0 \le \delta \le 1\).

Appendix F: Semi-major axis and vertices of elliptic vector locus

The calculation of the vector length \(L = |\mathbf {W}(t)|\) can be rearranged into the following form:

$$\begin{aligned} L^2= & {} [W_x(t)]^2 + [W_y(t)]^2 + [W_z(t)]^2 \end{aligned}$$
(F.27)
$$\begin{aligned}= & {} P \cos ^2 \alpha + Q \cos \alpha \sin \alpha + R \sin ^2 \alpha \end{aligned}$$
(F.28)
$$\begin{aligned}= & {} \frac{P + R}{2} + \frac{Q}{2} \sin 2 \alpha + \frac{P - R}{2} \cos 2 \alpha \end{aligned}$$
(F.29)
$$\begin{aligned}= & {} \frac{P + R}{2} + \frac{\sqrt{Q^2 + (P - R)^2}}{2} \sin (2 \alpha + \beta ),\nonumber \\ \end{aligned}$$
(F.30)

where

$$\begin{aligned} P= & {} v_E^2 \omega _E^2 \left[ \frac{\omega _E^2 \sin ^2 \theta }{\varOmega } + \frac{\omega _E^2 \cos ^2 \theta }{\varXi ^2} \right] , \end{aligned}$$
(F.31)
$$\begin{aligned} Q= & {} - 2 v_E^2 \omega _E^2 \left[ \frac{\nu \omega _E \sin ^2 \theta }{\varOmega } + \frac{\nu \omega _E \cos ^2 \theta }{\varXi ^2} \right] , \end{aligned}$$
(F.32)
$$\begin{aligned} R= & {} v_E^2 \omega _E^2 \left[ \frac{(\omega _B^2 + \nu ^2) \sin ^2 \theta }{\varOmega } + \frac{\nu ^2 \cos ^2 \theta }{\varXi ^2} \right] , \end{aligned}$$
(F.33)
$$\begin{aligned} \varOmega= & {} \left[ (\omega _E - \omega _B)^2 + \nu ^2 \right] \left[ (\omega _E + \omega _B)^2 + \nu ^2 \right] , \end{aligned}$$
(F.34)
$$\begin{aligned} \varXi= & {} \omega _E^2 + \nu ^2, \end{aligned}$$
(F.35)
$$\begin{aligned} \alpha= & {} \omega _E t + \phi , \end{aligned}$$
(F.36)
$$\begin{aligned}&(\cos \beta , \sin \beta ) \nonumber \\= & {} \left( \frac{Q}{\sqrt{Q^2 + (P - R)^2}}, \frac{P - R}{\sqrt{Q^2 + (P - R)^2}} \right) . \end{aligned}$$
(F.37)

\(L^2\) can be rewritten as

$$\begin{aligned} L^2= & {} \frac{1}{2} v_E^2 \omega _E^2 \left[ \frac{ (\omega _E^2 + \omega _B^2 + \nu ^2) \sin ^2 \theta }{ \varOmega } + \frac{ \cos ^2 \theta }{ \varXi } \right] \nonumber \\&+ \frac{1}{2} v_E^2 \omega _E^2 \sqrt{ \frac{ \sin ^2 \theta }{ \varOmega } - \frac{ \omega _B^4 \sin ^2 \theta \cos ^2 \theta }{ \varOmega \varXi ^2 } + \frac{ \cos ^2 \theta }{ \varXi ^2 } } \nonumber \\&\times \sin (2 \alpha + \beta ). \end{aligned}$$
(F.38)

L becomes its maximum (i.e. the length of the semi-major axis of the elliptic vector locus) when \(\sin (2 \alpha + \beta ) = 1\) twice in a domain \(0 \le \alpha < 2 \pi \), and \(\mathbf {W}(t)\) points the vertices of the ellipse at that time. Such \(\mathbf {W}(t)\) is specified by (14)–(16) with the \(\sin \alpha \) and \(\cos \alpha \) values corresponding to \(\alpha = \pi /4 - \beta /2\) and \(5 \pi /4 - \beta /2\):

$$\begin{aligned} \sin \alpha= & {} \pm \frac{\sqrt{2}}{2} \cos \frac{\beta }{2} \mp \frac{\sqrt{2}}{2} \sin \frac{\beta }{2} \nonumber \\= & {} \pm \frac{1}{2} \sqrt{1 + \cos \beta } \mp \frac{1}{2} \sqrt{1 - \cos \beta }, \end{aligned}$$
(F.39)
$$\begin{aligned} \cos \alpha= & {} \pm \frac{\sqrt{2}}{2} \cos \frac{\beta }{2} \pm \frac{\sqrt{2}}{2} \sin \frac{\beta }{2} \nonumber \\= & {} \pm \frac{1}{2} \sqrt{1 + \cos \beta } \pm \frac{1}{2} \sqrt{1 - \cos \beta }. \end{aligned}$$
(F.40)

X in (25) is \(\cos \beta \) in (F.37) calculated with P, Q, and R in (F.31)–(F.33).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, H., Nakata, Y. Elliptic vector loci of average electron velocity of electron swarm in constant-collision-frequency model gas under ac electric and dc magnetic fields crossed at arbitrary angles. Eur. Phys. J. D 76, 32 (2022). https://doi.org/10.1140/epjd/s10053-022-00346-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00346-1

Navigation