Skip to main content
Log in

Accessing different regimes by tuning the hopping phase of a weakly connected Bose–Einstein condensate within a two-mode model

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

This article has been updated

Abstract

We investigate the access of Josephson and Self-Trapping dynamical regimes on Bose–Einstein condensates confined by a rotating multiwell trap. Manipulation of the rotation allows us to tune the hopping phase among neighboring sites within a two-mode model and permits us to demonstrate that it is possible to dynamically connect qualitatively different regimes. For a sudden increase of the rotation frequency, we find that it is possible to reach both Josephson and Self-Trapping regimes starting from a broad range of initial states. Conversely, slow changes in the rotation frequency restrict this possibility to initial states very close to the Josephson–Self-Trapping regime separatrix. These findings are corroborated by numerical simulations of the three-dimensional Gross–Pitaevskii equation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data included in this study are available upon request by contact with the corresponding author.]

Change history

  • 04 February 2022

    In the caption of figure 7 \(\varphi_i\) was mentioned instead of \(\varphi_i\).

References

  1. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  2. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    Article  ADS  Google Scholar 

  3. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)

    Article  ADS  Google Scholar 

  4. D.M. Jezek, H.M. Cataldo, Phys. Rev. A 88, 013636 (2013)

    Article  ADS  Google Scholar 

  5. M. Nigro, P. Capuzzi, H.M. Cataldo, D.M. Jezek, Phys. Rev. A. 97, 013626 (2018)

    Article  ADS  Google Scholar 

  6. D.M. Jezek, P. Capuzzi, H.M. Cataldo, Phys. Rev. A 87, 053625 (2013)

    Article  ADS  Google Scholar 

  7. M. Nigro, P. Capuzzi, H.M. Cataldo, D.M. Jezek, Eur. Phys. J. D 71, 297 (2017)

    Article  ADS  Google Scholar 

  8. C. Ryu, M. Andersen, P. Cladé, Vasant Natarajan, K. Helmerson, W. Phillips, Phys. Rev .Lett. 99, 260401 (2007)

    Article  ADS  Google Scholar 

  9. A. Ramanathan, K.C. Wright, S.R. Muniz, M. Zelan, W.T. Hill III., C.J. Lobb, K. Helmerson, W.D. Phillips, G.K. Campbell, Phys. Rev. Lett. 106, 130401 (2011)

    Article  ADS  Google Scholar 

  10. K.C. Wright, R.B. Blakestad, C.J. Lobb, W.D. Phillips, G.K. Campbell, Phys. Rev. Lett. 110, 025302 (2013)

    Article  ADS  Google Scholar 

  11. K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043030 (2009)

    Article  ADS  Google Scholar 

  12. M. Aidelsburger, J.L. Ville, R. Saint-Jalm, S. Nascimbene, J. Dalibard, J. Beugnon, Phys. Rev. Lett. 119, 190403 (2017)

    Article  ADS  Google Scholar 

  13. D.A. Butts, D.S. Rokhsar, Nature 397, 327 (1999)

    Article  ADS  Google Scholar 

  14. N.R. Cooper, Adv. Phys. 57, 539 (2008)

    Article  ADS  Google Scholar 

  15. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  16. D. Jaksch, P. Zoller, New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

  17. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Rev. Mod. Phys. 83, 1523–1543 (2011)

  18. M. Aidelsburger, S. Nascimbene, N. Goldman, Comptes Rendus Phys. 19, 394–432 (2018)

    Article  ADS  Google Scholar 

  19. K. Jiménez-García, L.J. LeBlanc, R.A. Williams, M.C. Beeler, A.R. Perry, I.B. Spielman, Phys. Rev. Lett. 108, 225303 (2012)

    Article  ADS  Google Scholar 

  20. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, Phys. Rev. Lett. 108, 225304 (2012)

    Article  ADS  Google Scholar 

  21. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  22. E. Arimondo, D. Ciampini, A. Eckardt, M. Holthaus, O. Morsch, Adv. At. Mol. Opt. Phys. 61, 515 (2012)

    Article  ADS  Google Scholar 

  23. M. Nigro, P. Capuzzi, D.M. Jezek, Phys. Rev. A 98, 063622 (2018)

    Article  ADS  Google Scholar 

  24. M. Nigro, P. Capuzzi, D.M. Jezek, J. Phys. B: At. Mol. Opt. Phys. 53, 025301 (2020)

    Article  ADS  Google Scholar 

  25. D.M. Jezek, H.M. Cataldo, Phys. Rev. A 83, 013629 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET and Universidad de Buenos Aires through Grants PIP 11220150100442CO and UBACyT 20020150100120BA, respectively.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Pablo Capuzzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigro, M., Capuzzi, P. & Jezek, D.M. Accessing different regimes by tuning the hopping phase of a weakly connected Bose–Einstein condensate within a two-mode model. Eur. Phys. J. D 76, 12 (2022). https://doi.org/10.1140/epjd/s10053-022-00340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00340-7

Navigation