Skip to main content
Log in

Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose-Einstein condensate in a double-well potential

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We investigate the mean-field energy spectrum and dynamics in a Bose-Einstein condensate in a double-well potential with non-Hermiticity from the nonreciprocal hopping, and show that the interplay of nonreciprocity and nonlinearity leads to exotic properties. Under the two-mode and mean-field approximations, the nonreciprocal generalization of the nonlinear Schrödinger equation and Bloch equations of motion for this system are obtained. We analyze the \({\cal P}{\cal T}\) phase diagram and the dynamical stability of fixed points. The reentrance of \({\cal P}{\cal T}\)-symmetric phase and the reformation of stable fixed points with increasing the nonreciprocity parameter are found. Besides, we uncover a linear self-trapping effect induced by the nonreciprocity. In the nonlinear case, the self-trapping oscillation is enhanced by the nonreciprocity and then collapses in the \({\cal P}{\cal T}\)-broken phase, and can finally be recovered in the reentrant \({\cal P}{\cal T}\)-symmetric phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and PT symmetry, Nat. Phys. 14(1), 11 (2018)

    Article  Google Scholar 

  3. M. A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363(6422), eaar7709 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)

    Article  ADS  Google Scholar 

  5. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. W. D. Heiss, Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37(6), 2455 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. W. D. Heiss, The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. L. Pan, S. Chen, and X. Cui, High-order exceptional points in ultracold Bose gases, Phys. Rev. A 99(1), 011601 (2019)

    Article  ADS  Google Scholar 

  10. Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, and M. Ueda, Topological phases of non-Hermitian systems, Phys. Rev. X 8(3), 031079 (2018)

    Google Scholar 

  11. K. Kawabata, T. Bessho, and M. Sato, Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123(6), 066405 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77(3), 570 (1996)

    Article  ADS  Google Scholar 

  13. S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121(2), 026808 (2018)

    Article  ADS  Google Scholar 

  15. L. Jin and Z. Song, Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry, Phys. Rev. B 99(8), 081103 (2019)

    Article  ADS  Google Scholar 

  16. S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122(23), 237601 (2019)

    Article  ADS  Google Scholar 

  17. H. Jiang, L. J. Lang, C. Yang, S. L. Zhu, and S. Chen, Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices, Phys. Rev. B 100(5), 054301 (2019)

    Article  ADS  Google Scholar 

  18. D. W. Zhang, L. Z. Tang, L. J. Lang, H. Yan, and S. L. Zhu, Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63(6), 267062 (2020)

    Article  ADS  Google Scholar 

  19. X. W. Luo and C. Zhang, Non-Hermitian disorder-induced topological insulators, arXiv: 1912.10652v1 (2019)

  20. L. Z. Tang, L. F. Zhang, G. Q. Zhang, and D. W. Zhang, Topological Anderson insulators in two-dimensional non-Hermitian disordered systems, Phys. Rev. A 101(6), 063612 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Liu, Z. Su, Z. Q. Zhang, and H. Jiang, Topological Anderson insulator in two-dimensional non-Hermitian systems, Chin. Phys. B 29(5), 050502 (2020)

    Article  ADS  Google Scholar 

  22. Q. B. Zeng and Y. Xu, Winding numbers and generalized mobility edges in non-Hermitian systems, Phys. Rev. Research 2(3), 033052 (2020)

    Article  ADS  Google Scholar 

  23. L. Li, C. H. Lee, S. Mu, and J. Gong, Critical non-Hermitian skin effect, Nat. Commun. 11(1), 5491 (2020)

    Article  ADS  Google Scholar 

  24. D. W. Zhang, Y. L. Chen, G. Q. Zhang, L. J. Lang, Z. Li, and S. L. Zhu, Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry-André-Harper model, Phys. Rev. B 101(23), 235150 (2020)

    Article  ADS  Google Scholar 

  25. T. Liu, J. J. He, T. Yoshida, Z. L. Xiang, and F. Nori, Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102(23), 235151 (2020)

    Article  ADS  Google Scholar 

  26. Z. Xu, S. Chen, Z. Xu, and S. Chen, Topological Bose-Mott insulators in one-dimensional non-Hermitian superlattices, Phys. Rev. B 102(3), 035153 (2020)

    Article  ADS  Google Scholar 

  27. T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, and R. Thomale, Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16(7), 747 (2020)

    Article  Google Scholar 

  28. M. Ezawa, Electric-circuit simulation of the Schrödinger equation and non-Hermitian quantum walks, Phys. Rev. B 100(16), 165419 (2019)

    Article  ADS  Google Scholar 

  29. L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue, Non-Hermitian bulk-boundary correspondence in quantum dynamics, Nat. Phys. 16(7), 761 (2020)

    Article  Google Scholar 

  30. Z. Yu and S. Fan, Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics 3(2), 91 (2009)

    Article  ADS  Google Scholar 

  31. M. S. Kang, A. Butsch, and P. S. J. Russell, Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre, Nat. Photonics 5(9), 549 (2011)

    Article  ADS  Google Scholar 

  32. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photonics 5(12), 758 (2011)

    Article  ADS  Google Scholar 

  33. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, An all-silicon passive optical diode, Science 335(6067), 447 (2012)

    Article  ADS  Google Scholar 

  34. S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, Optical nonreciprocity of cold atom Bragg mirrors in motion, Phys. Rev. Lett. 110(22), 223602 (2013)

    Article  ADS  Google Scholar 

  35. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity-time-symmetric whispering-gallery microcavities., Nat. Phys. 10(5), 394 (2014)

    Article  Google Scholar 

  36. Y. P. Wang, J. W. Rao, Y. Yang, P. C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, and C. M. Hu, Nonreciprocity and unidirectional invisibility in cavity magnonics, Phys. Rev. Lett. 123(12), 127202 (2019)

    Article  ADS  Google Scholar 

  37. Y. Zhao, J. Rao, Y. Gui, Y. Wang, and C. M. Hu, Broad-band nonreciprocity realized by locally controlling the Magnon’s radiation, Phys. Rev. Appl. 14(1), 014035 (2020)

    Article  ADS  Google Scholar 

  38. Z. Shen, Y. L. Zhang, Y. Chen, C. L. Zou, Y. F. Xiao, X. B. Zou, F. W. Sun, G. C. Guo, and C. H. Dong, Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10(10), 657 (2016)

    Article  ADS  Google Scholar 

  39. F. Ruesink, M. A. Miri, A. Alù, and E. Verhagen, Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7(1), 13662 (2016)

    Article  ADS  Google Scholar 

  40. N. R. Bernier, L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg, Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8(1), 604 (2017)

    Article  ADS  Google Scholar 

  41. K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Marquardt, A. A. Clerk, and O. Painter, Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13(5), 465 (2017)

    Article  Google Scholar 

  42. G. A. Peterson, F. Lecocq, K. Cicak, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7(3), 031001 (2017)

    Google Scholar 

  43. H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Non-reciprocal control and cooling of phonon modes in an optomechanical system, Nature 568(7750), 65 (2019)

    Article  ADS  Google Scholar 

  44. W. Gou, T. Chen, D. Xie, T. Xiao, T. S. Deng, B. Gadway, W. Yi, and B. Yan, Tunable nonreciprocal quantum transport through a dissipative Aharonov-Bohm ring in ultracold atoms, Phys. Rev. Lett. 124(7), 070402 (2020)

    Article  ADS  Google Scholar 

  45. D. W. Zhang, Y. Q. Zhu, Y. X. Zhao, H. Yan, and S. L. Zhu, Topological quantum matter with cold atoms, Adv. Phys. 67(4), 253 (2018)

    Article  ADS  Google Scholar 

  46. Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in nonlinear lattices, Rev. Mod. Phys. 83(1), 247 (2011)

    Article  ADS  Google Scholar 

  47. O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006)

    Article  ADS  Google Scholar 

  48. B. Wu and Q. Niu, Nonlinear Landau-Zener tunneling, Phys. Rev. A 61(2), 023402 (2000)

    Article  ADS  Google Scholar 

  49. J. Liu, L. Fu, B. Y. Ou, S. G. Chen, D. I. Choi, B. Wu, and Q. Niu, Theory of nonlinear Landau-Zener tunneling, Phys. Rev. A 66(2), 023404 (2002)

    Article  ADS  Google Scholar 

  50. J. Liu, B. Wu, and Q. Niu, Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90(17), 170404 (2003)

    Article  ADS  Google Scholar 

  51. M. E. Kellman and V. Tyng, Bifurcation effects in coupled Bose-Einstein condensates, Phys. Rev. A 66(1), 013602 (2002)

    Article  ADS  Google Scholar 

  52. A. P. Hines, R. H. McKenzie, and G. J. Milburn, Quantum entanglement and fixed-point bifurcations, Phys. Rev. A 71(4), 042303 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigetti, R. J. Schoelkopf, M. H. Devoret, D. Vion, and D. Esteve, Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction, Phys. Rev. Lett. 94(2), 027005 (2005)

    Article  ADS  Google Scholar 

  54. T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, Classical bifurcation at the transition from Rabi to Josephson dynamics, Phys. Rev. Lett. 105(20), 204101 (2010)

    Article  ADS  Google Scholar 

  55. C. Lee, L. B. Fu, and Y. S. Kivshar, Many-body quantum coherence and interaction blockade in Josephson-linked Bose-Einstein condensates, Europhys. Lett. 81(6), 60006 (2008)

    Article  ADS  Google Scholar 

  56. C. Lee, Universality and anomalous mean-field break-down of symmetry-breaking transitions in a coupled two-component Bose-Einstein condensate, Phys. Rev. Lett. 102(7), 070401 (2009)

    Article  ADS  Google Scholar 

  57. C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7(1), 109 (2012)

    Article  ADS  Google Scholar 

  58. A. Burchianti, C. Fort, and M. Modugno, Josephson plasma oscillations and the Gross-Pitaevskii equation: Bogoliubov approach versus two-mode model, Phys. Rev. A 95(2), 023627 (2017)

    Article  ADS  Google Scholar 

  59. S. Martínez-Garaot, G. Pettini, and M. Modugno, Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction, Phys. Rev. A 98(4), 043624 (2018)

    Article  ADS  Google Scholar 

  60. D. W. Zhang, L. B. Fu, Z. D. Wang, and S. L. Zhu, Josephson dynamics of a spin-orbit-coupled Bose-Einstein condensate in a double-well potential, Phys. Rev. A 85(4), 043609 (2012)

    Article  ADS  Google Scholar 

  61. D. W. Zhang, Z. D. Wang, and S. L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7(1), 31 (2012)

    Article  ADS  Google Scholar 

  62. W. Y. Wang, J. Lin, and J. Liu, Cyclotron dynamics of a Bose-Einstein condensate in a quadruple-well potential with synthetic gauge fields, Front. Phys. 16(5), 52502 (2021)

    Article  ADS  Google Scholar 

  63. A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates, Phys. Rev. Lett. 79(25), 4950 (1997)

    Article  ADS  Google Scholar 

  64. S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59(1), 620 (1999)

    Article  ADS  Google Scholar 

  65. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95(1), 010402 (2005)

    Article  ADS  Google Scholar 

  66. M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaĭtre, G. Malpuech, and J. Bloch, Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons, Nat. Phys. 9(5), 275 (2013)

    Article  Google Scholar 

  67. V. V. Konotop, J. Yang, and D. A. Zezyulin, Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88(3), 035002 (2016)

    Article  ADS  Google Scholar 

  68. E. M. Graefe, H. J. Korsch, and A. E. Niederle, Mean-field dynamics of a non-Hermitian Bose-Hubbard dimer, Phys. Rev. Lett. 101(15), 150408 (2008)

    Article  ADS  Google Scholar 

  69. E. M. Graefe, U. Günther, H. J. Korsch, and A. E. Niederle, A non-HermitianPT symmetric Bose-Hubbard model: Eigenvalue rings from unfolding higher-order exceptional points, J. Phys. A Math. Theor. 41(25), 255206 (2008)

    Article  ADS  MATH  Google Scholar 

  70. D. Witthaut, F. Trimborn, and S. Wimberger, Dissipation-induced coherence and stochastic resonance of an open two-mode Bose-Einstein condensate, Phys. Rev. A 79(3), 033621 (2009)

    Article  ADS  Google Scholar 

  71. E. M. Graefe and C. Liverani, Mean-field approximation for a Bose-Hubbard dimer with complex interaction strength, J. Phys. A Math. Theor. 46(45), 455201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  72. E. M. Graefe, H. J. Korsch, and A. E. Niederle, Quantum-classical correspondence for a non-Hermitian Bose-Hubbard dimer, Phys. Rev. A 82(1), 013629 (2010)

    Article  ADS  Google Scholar 

  73. E. M. Graefe, Stationary states of a PT symmetric two-mode Bose-Einstein condensate, J. Phys. A Math. Theor. 45(44), 444015 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. H. Cartarius and G. Wunner, Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential, Phys. Rev. A 86(1), 013612 (2012)

    Article  ADS  Google Scholar 

  75. D. Dast, D. Haag, H. Cartarius, G. Wunner, R. Eichler, and J. Main, A Bose-Einstein condensate in a PT-symmetric double well, Fortschr. Phys. 61(2–3), 124 (2013)

    Article  MATH  Google Scholar 

  76. D. Dast, D. Haag, H. Cartarius, J. Main, and G. Wunner, Eigenvalue structure of a Bose-Einstein condensate in a PT-symmetric double well, J. Phys. A Math. Theor. 46(37), 375301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  77. F. Single, H. Cartarius, G. Wunner, and J. Main, Coupling approach for the realization of a PT-symmetric potential for a Bose-Einstein condensate in a double well, Phys. Rev. A 90(4), 042123 (2014)

    Article  ADS  Google Scholar 

  78. R. Fortanier, D. Dast, D. Haag, H. Cartarius, J. Main, G. Wunner, and R. Gutöhrlein, Dipolar Bose-Einstein condensates in a PT-symmetric double-well potential, Phys. Rev. A 89(6), 063608 (2014)

    Article  ADS  Google Scholar 

  79. D. Dast, D. Haag, H. Cartarius, J. Main, and G. Wunner, Bose-Einstein condensates with balanced gain and loss beyond mean-field theory, Phys. Rev. A 94(5), 053601 (2016)

    Article  ADS  Google Scholar 

  80. D. Haag, D. Dast, H. Cartarius, and G. Wunner, PT-symmetric gain and loss in a rotating Bose-Einstein condensate, Phys. Rev. A 97(3), 033607 (2018)

    Article  ADS  Google Scholar 

  81. Y. Zhang, Z. Chen, B. Wu, T. Busch, and V. V. Konotop, Asymmetric loop spectra and unbroken phase protection due to nonlinearities in PT-symmetric periodic potentials, Phys. Rev. Lett. 127(3), 034101 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  82. B. Wu and Q. Niu, Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices, Phys. Rev. A 64(6), 061603 (2001)

    Article  ADS  Google Scholar 

  83. B. Wu and Q. Niu, Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability, New J. Phys. 5, 104 (2003)

    Article  ADS  Google Scholar 

  84. A. P. Seyranian and A. A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications, World Scientific, 2003

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174126, 12104166, U1830111, 11947097, and 12047522), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), the Science and Technology of Guangzhou (Grant No. 2019050001), and the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020A1515110290 and 2021A1515010315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cai-Xia Zhang, Jian Xu or Dan-Wei Zhang.

Additional information

arXiv: 2111.01390v1. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1133-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YP., Zhang, GQ., Zhang, CX. et al. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose-Einstein condensate in a double-well potential. Front. Phys. 17, 42503 (2022). https://doi.org/10.1007/s11467-021-1133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1133-2

Keywords

Navigation