Skip to main content
Log in

Effects of giant Kerr and quintic nonlinearities on electromagnetically induced grating in multiple quantum wells

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The characteristics of an electromagnetically induced grating (EIG) created in symmetric multiple quantum wells in the regime of electromagnetically induced transparency have been presented. The EIG is created due to absorption and phase modulation under the electromagnetically induced transparency. The increasing value of the Rabi frequency of control standing wave enhances transmission through the EIG. In addition, it is found that the diffraction efficiency of the grating and the intensity of the first-order diffraction can be controlled by controlling the Rabi frequency of the standing wave control field and the interaction length in the quantum well. Optical nonlinearities can improve the diffraction intensity of significant orders, particularly zeroth and first order. The improvement is largest in case only the Kerr is the dominant nonlinearity and moderate under quintic nonlinearity. Present results may be useful in communication and signal processing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data, or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available within the article.]

References

  1. S.E. Harris, Electromagn. Induc. Transpar. Phys. Today 50, 36–42 (1997)

    Article  Google Scholar 

  2. J.P. Marangos, Electromagnetically induced transparency. J. Mod. Opt. 45, 471–503 (1998)

    Article  ADS  Google Scholar 

  3. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  4. J.F. Dynes, M.D. Frogley, J. Rodger, C.C. Philips, Optically mediated coherent population trapping in asymmetric semiconductor quantum wells. Phys. Rev. B 72, 085323–327 (2005)

    Article  ADS  Google Scholar 

  5. M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, C.C. Philips, Gain without inversion in semiconductor nanostructures. Nat. Mater. 5, 175–178 (2006)

    Article  ADS  Google Scholar 

  6. Y. Niu, S. Gong, R. Li, Z. Xu, X. Liang, Giant kerr nonlinearity induced by interacting dark resonances. Opt. Lett. 30, 3371–3373 (2005)

    Article  ADS  Google Scholar 

  7. H. Schmidt, A. Imamoglu, Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)

    Article  ADS  Google Scholar 

  8. N. Borgohain, M. Belic, S. Konar, Giant parabolic nonlinearities at infrared in \(\Lambda \)-type three level multiple quantum wells. Annl. Phys. 361, 107 (2015)

    Article  MathSciNet  Google Scholar 

  9. C. Zhu, G. Huang, Giant Kerr nonlinearity controlled entangled photons and polarization phase gates in coupled quantum-well structures. Opt. Express 19, 23364–23376 (2011)

    Article  ADS  Google Scholar 

  10. E. Paspalakis, P.L. Knight, Phase control of spontaneous emission. Phys. Rev. Lett. 81, 293 (1998)

    Article  ADS  Google Scholar 

  11. Y. Niu, S. Gong, Enhancing Kerr nonlinearity via spontaneously generated coherence. Phys. Rev. A 73, 053811 (2006)

    Article  ADS  Google Scholar 

  12. Z.J. Simmons, N.A. Proite, J. Miles, D.E. Sikes, D.D. Yavuz, Refractive index enhancement with vanishing absorption in short, high-density vapor cells. Phys. Rev. A 85, 053810 (2012)

    Article  ADS  Google Scholar 

  13. J.E. Field, K.H. Hahn, S.E. Harris, Observation of electromagnetically induced transparency in collisionally broadened lead vapor. Phys. Rev. Lett. 67, 3062 (1991)

    Article  ADS  Google Scholar 

  14. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  15. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001)

    Article  ADS  Google Scholar 

  16. J. Clarke, H. Chen, A.V. Wijngaarden, Electromagnetically induced transparency and optical switching in a rubidium cascade system. Appl. Opt. 40, 2047–2051 (2001)

    Article  ADS  Google Scholar 

  17. M.D. Lukin, A. Imamoglu, Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001)

    Article  ADS  Google Scholar 

  18. A. Joshi, M. Xiao, Optical bistability in a three-level semiconductor quantum-well system. Appl. Phys. B 79, 65–69 (2004)

    Article  ADS  Google Scholar 

  19. J. Li, R. Yu, J. Liu, P. Huang, X. Yang, Voltage-controlled optical bistability of a tunable three-level system in a quantum- dot molecule. Physica E 41, 70–73 (2008)

    Article  ADS  Google Scholar 

  20. Y. Zhang, A.W. Brown, M. Xiao, Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett. 99, 123603 (2007)

    Article  ADS  Google Scholar 

  21. G.X. Huang, C. Hang, L. Deng, Gain-assisted superluminal optical solitons at very low light intensity. Phys. Rev. A 77, 011803(R) (2008)

    Article  ADS  Google Scholar 

  22. S. Shwetanshumala, S. Konar, A. Biswas, Ultraslow solitons due to large quintic nonlinearity in coupled quantum well structures driven by two control laser beams. Appl. Phys. B 111, 53–64 (2013)

    Article  ADS  Google Scholar 

  23. M. Sahrai, H. Tajalli, K.T. Kapale, M.S. Zubairy, Tunable phase control for subluminal to superluminal light propagation. Phys. Rev. A 70, 023813 (2004)

    Article  ADS  Google Scholar 

  24. A. Andre, M.D. Lukin, Manipulating light pulses via dynamically controlled photonic band gap. Phys. Rev. Lett. 89, 143602 (2002)

    Article  ADS  Google Scholar 

  25. M. Artoni, G.C. La Rocca, Optically tunable photonic stop bands in homogeneous absorbing media. Phys. Rev. Lett. 96, 073905 (2006)

    Article  ADS  Google Scholar 

  26. H.Y. Ling, Y.Q. Li, M. Xiao, Electromagnetically induced grating: homogeneously broadened medium. Phys. Rev. A 57, 1338 (1998)

    Article  ADS  Google Scholar 

  27. G.C. Cardoso, J.W.R. Tabosa, Electromagnetically induced gratings in a degenerate open two-level system. Phys. Rev. A 65, 033803 (2002)

    Article  ADS  Google Scholar 

  28. M. Mitsunaga, N. Imoto, Observation of an electromagnetically induced grating in cold sodium atoms. Phys. Rev. A 59, 4773–4776 (1999)

    Article  ADS  Google Scholar 

  29. L.E.E. de Araujo, Electromagnetically induced phase grating. Opt. Lett. 35, 977–979 (2010)

    Article  ADS  Google Scholar 

  30. R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence. Phys. Rev. A 83, 033824 (2011)

    Article  ADS  Google Scholar 

  31. A.W. Brown, M. Xiao, All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett. 30, 699–701 (2005)

    Article  ADS  Google Scholar 

  32. Y. Zhang, Z. Wu, M.R. Belic, H. Zheng, Z. Wang, M. Xiao, Y. Zhang, Photonic Floquet topological insulators in atomic ensembles. Laser Photon. Rev. 9, 331–338 (2015)

    Article  ADS  Google Scholar 

  33. J.W.R. Tabosa, A. Lezama, G. Cardoso, Transient Bragg diffraction by a transferred population grating: application for cold atoms velocimetry. Opt. Commun. 165, 59 (1999)

    Article  ADS  Google Scholar 

  34. B.K. Dutta, P.K. Mahapatra, Electromagnetically induced grating in a three-level \(\Xi \)-type system driven by a strong standing wave pump and weak probe fields. J. Phys. B 39, 1145 (2006)

    Article  ADS  Google Scholar 

  35. Z.H. Xiao, S.G. Shin, K. Kim, An electromagnetically induced grating by microwave modulation. J. Phys. B 43, 161004 (2010)

    Article  ADS  Google Scholar 

  36. B. Xie, X. Cai, Z.-H. Xiao, Electromagnetically induced phase grating controlled by spontaneous emission. Opt. Commun. 285, 133–135 (2012)

    Article  ADS  Google Scholar 

  37. S.H. Asadpour, A. Panahpour, M. Jafari, Phase-dependent electromagnetically induced grating in a four-level quantum system near a plasmonic nanostructure. Eur. Phys. J. Plus 133, 411 (2018)

    Article  Google Scholar 

  38. S.H. Asadpour, M. Jafari, Plasmon-induced phase grating via nonlinear modulation. Opt. Commun. 421, 125–133 (2018)

    Article  ADS  Google Scholar 

  39. T. Shui, L. Li, X. Wang, W.-X. Yang, One- and two-dimensional electromagnetically induced gratings in an \({Er}^{3+}\) doped yttrium aluminum garnet crystal. Sci. Rep. 10, 4019 (2020)

    Article  ADS  Google Scholar 

  40. F. Zhou, Y. Qi, H. Sun, D. Chen, J. Wang, Y. Niu, S. Gong, Electromagnetically induced grating in asymmetric quantum wells via Fano interference. Opt. Express 21, 12249 (2013)

    Article  ADS  Google Scholar 

  41. H. Kang, G. Hemandez, Y. Zhu, Slow-Light six-wave mixing at low light intensities. Phys. Rev. Lett. 93, 073601 (2004)

    Article  ADS  Google Scholar 

  42. C. Hang, Y. Li, L. Ma, G. Huang, Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system. Phys. Rev. A 74, 012319 (2006)

    Article  ADS  Google Scholar 

  43. D.K. Giri, P.S. Gupta, Short-time squeezing effects in spontaneous and stimulated six-wave mixing process. Opt. Commun. 221, 135–143 (2003)

    Article  ADS  Google Scholar 

  44. Y. Zhang, U. Khadka, B. Anderson, M. Xiao, Temporal and spatial interference between four-wave mixing and six- wave mixing channels. Phys. Rev. Lett. 102, 013601 (2009)

    Article  ADS  Google Scholar 

  45. A. Vafafard, M. Sahrai, H.R. Hamedi, S.H. Asadpour, Tunneling induced two-dimensional phase grating in a quantum well nanostructure via third and fifth orders of susceptibility. Sci. Rep. 10, 7389 (2020)

    Article  ADS  Google Scholar 

  46. A. Vafafard, M. Sahrai, V. Siahpoush, H.R. Hamedi, S.H. Asadpour, Optically induced diffraction gratings based on periodic modulation of linear and nonlinear effects for atom-light coupling quantum systems near plasmonic nanostructures. Sci. Rep. 10, 16684 (2020)

    Article  Google Scholar 

  47. B.K. Dutta, P. Panchadhyayee, I. Bayal, P.K. Mahapatra, N. Das, Multi-wave-mixing-induced nonlinear modulation of diffraction peaks in an opto-atomic grating. Sci. Rep. 10, 16779 (2020)

    Article  ADS  Google Scholar 

  48. J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, A.Y. Cho, Measurement of the intersubband scattering rate in semiconductor quantum wells by excited state differential absorption spectroscopy. Appl. Phys. Lett. 63, 1354 (1993)

    Article  ADS  Google Scholar 

  49. M.O. Scully, M.S. Zubairy, Quantum Optics, 1st edn. (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  50. W.X. Wang, J.M. Hou, R.K. Lee, Ultraslow bright and dark solitons in semiconductor quantum wells. Phys. Rev. A 77, 033838 (2008)

    Article  ADS  Google Scholar 

  51. C.R. Lee, Y.C. Li, F.K. Men, C.H. Pao, Y.C. Tsai, J.F. Wang, Model for an inversionless two-color laser. Appl. Phys. Lett. 86, 201112 (2005)

    Article  ADS  Google Scholar 

  52. E. Paspalakis, M. Tsaousidou, A.F. Terzis, Coherent manipulation of a strongly driven semiconductor quantum well. Phys. Rev. B 73, 125344 (2006)

    Article  ADS  Google Scholar 

  53. J.H. Li, Controllable optical bistability in a four-subband semiconductor quantum well system. Phys. Rev. B 75, 155329 (2007)

    Article  ADS  Google Scholar 

  54. N. Borgohain, S. Konar, The effects of control field detuning on the modulation instability in a three-level quantum well system. J. Appl. Phys. 119, 213103 (2016)

    Article  ADS  Google Scholar 

  55. D. Pushkarov, S. Tanev, Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguide with third and fifth order nonlinearities. Opt. Commun. 124, 354–364 (1996)

    Article  ADS  Google Scholar 

  56. A.S. Reyna, C.B. de Araújo, Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express. 22, 22456–22469 (2014)

    Article  ADS  Google Scholar 

  57. R. Mukherjee, S. Konar, P. Mishra, Phase-sensitive modulation instability in coupled quantum wells. Phys. Rev. A 103, 033517 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  58. F. Bozorgzadeh, M. Sahrai, Laser-induced diffraction grating in asymmetric double quantum well nanostructure. Laser. Phys. Lett. 16, 036002 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank unanimous referees for valuable comments which have been very helpful to improve the quality of the manuscript. One of the authors Rohit Mukherjee would like to thank Defense Research and Development Organization (DRDO), Government of India, New Delhi, for providing fellowship through the R&D project ERIP/ER/1202225/M/01/1668. The work is financially supported by DRDO; SK would like to thank and acknowledge for the support.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions in this work.

Corresponding author

Correspondence to Rohit Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, R., Konar, S. Effects of giant Kerr and quintic nonlinearities on electromagnetically induced grating in multiple quantum wells. Eur. Phys. J. D 75, 263 (2021). https://doi.org/10.1140/epjd/s10053-021-00272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00272-8

Navigation