Skip to main content
Log in

Giant Kerr–quintic–septic nonlinearities in semiconductor quantum wells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The higher order nonlinearities are investigated in asymmetric semiconductor double quantum well nanostructures with nearly vanishing absorption by electromagnetically induced transparency technique. The existence of giant Kerr, quintic, as well as septic nonlinearities, are identified in the quantum well nanostructures, whose peak values of \({\chi }^{(3)}\), \({\chi }^{(5)}\), and \({\chi }^{(7)}\) are found to be \(\sim {10}^{-13}\;{\text{m}}^{2}/{\text{V}}^{2}\), \(\sim {10}^{-25}\;{\text{m}}^{4}/{\text{V}}^{4}\) and \(\sim {10}^{-37}\,{\text{m}}^{6}/{\text{V}}^{6}\), respectively, at 9.93 µm pumping wavelength. We demonstrate that not only the magnitude of Rabi frequencies or the detuning of the controlling fields, but also the relative phase of the applied fields can enhance these nonlinearities, and shift their peak values to any desired probe frequency. The giant higher-order nonlinearities identified in these quantum well nanostructures cannot be overlooked since the trait of a number of nonlinear optical phenomena critically relies on the nature and magnitude of these nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The authors declare that all data supporting the findings of this study are available within the article.]

References

  1. M.D. Frogley, J.F. Dynes, M. Beck, J. Faist, C.C. Philips, Gain without inversion in semiconductor nanostructure. Nat. Mater. 5, 175–178 (2006)

    Article  ADS  Google Scholar 

  2. J.P. Marangos, Electromagnetically induced transparency. J. Mod. Opt. 45, 471–503 (1998)

    Article  ADS  Google Scholar 

  3. M. Fleishchhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  4. J.F. Dynes, M.D. Frogley, J. Rodger, C.C. Philips, Optically mediated coherent population trapping in asymmetric semiconductor quantum wells. Phys. Rev. B 72, 085323 (2005)

    Article  ADS  Google Scholar 

  5. H. Schmidt, A. Imamoglu, Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)

    Article  ADS  Google Scholar 

  6. Y. Niu, S. Gong, R. Li, Z. Xu, X. Li, Gaint Kerr nonlinearity induced by interacting dark resonances. Opt. Lett. 30, 3371–3373 (2005)

    Article  ADS  Google Scholar 

  7. N. Borgohain, M. Belic, S. Konar, Gaint parabolic nonlinearities at infrared in Ʌ-type three level multiple quantum wells. Annal. Phys. 361, 107–109 (2015)

    Article  Google Scholar 

  8. C. Zhu, G. Huang, Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantumwell structures. Opt. Exp. 19, 23364–23376 (2011)

    Article  Google Scholar 

  9. A. Joshi, M. Xiao, Optical bistability in a three-level semiconductor quantum well system. Appl. Phys. B 79, 65–69 (2004)

    Article  ADS  Google Scholar 

  10. J. Li, R. Yu, J. Liu, P. Huang, X. Yang, Voltage-controlled optical bistability of a tunable three-level system in a quantum-dot molecule. Physica E 41, 70–73 (2008)

    Article  ADS  Google Scholar 

  11. Y. Chen, L. Deng, A. Chen, Controllable optical bistability and multistability in asymmetric double quantum wells via spontaneously generated coherence. Annal. Phys. 353, 1–8 (2015)

    Article  ADS  MATH  Google Scholar 

  12. E. Paspalakis, P.L. Knight, Phase control of spontaneous emission. Phys. Rev. Lett. 81, 293 (1998)

    Article  ADS  Google Scholar 

  13. Y. Niu, S. Gong, Enhancing Kerr nonlinearity via spontaneously generated coherence. Phys. Rev. A 73, 053811 (2006)

    Article  ADS  Google Scholar 

  14. Y. Zhang, A.W. Brown, M. Xiao, Opening Four-Wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. A 99, 123603 (2007)

    ADS  Google Scholar 

  15. F. Biancalana, A. Amann, E.P. O’Reilly, Gap solitons in spatiotemporal photonic crystals. Phys. Rev. A 77, 011801 (2008)

    Article  ADS  Google Scholar 

  16. S. Shwetanshumala, S. Konar, A. Biswas, Ultraslow solitons due to large quintic nonlinearity in coupled quantum well structures driven by two control laser beams. Appl. Phys. B 111, 53–64 (2013)

    Article  ADS  Google Scholar 

  17. W.X. Yang, T.T. Zha, R.K. Lee, Giant Kerr nonlinearities and slow optical solitons in coupled double quantum-well nanostructure. Phys. Lett. A 374, 355–359 (2009)

    Article  ADS  Google Scholar 

  18. W.X. Yang, J.M. Hou, R.K. Lee, Ultraslow bright and dark solitons in semiconductor quantum wells. Phys. Rev. A 77, 033838 (2008)

    Article  ADS  Google Scholar 

  19. C. Zhu, G. Huang, Slow-light solitons in coupled asymmetric quantum wells via interband transitions. Phys. Rev. B 80, 235408 (2009)

    Article  ADS  Google Scholar 

  20. N. Borgohain, M. Belic, S. Konar, Infrared Supercontinuum generation in multiple quantum well nanostructures. J. Opt. 18, 115001 (2016)

    Article  ADS  Google Scholar 

  21. N. Borgohain, S. Konar, The effects of control field detuning on the modulation instability in a three-level quantum well system. J. Appl. Phys. 119, 213103 (2016)

    Article  ADS  Google Scholar 

  22. L. Pengbo, G. Ying, G. Qihuang, Fifth order nonlinearity and 3-Qubit phase gate in five level tripod atomic system. J. Opt. Soc. Am. B 25, 504 (2008)

    Article  Google Scholar 

  23. C. Li, J. Wang, L. Lin, Q. Zeng, Y. Cai, A. Yang, Y. Peng, Enhanced fifth order nonlinearity with competing linear and nonlinear susceptibility via Fano interference. J. Opt. Soc. Am. B 38, 1392–1397 (2021)

    Article  ADS  Google Scholar 

  24. R. Mukherjee, S. Konar, Effect of quintic nonlinearity on self-phase modulation and modulation instability in multiple coupled quantum wells under electromagnetically induced transparency. Res. Phys. 17, 103090 (2020)

    Google Scholar 

  25. A.F. Terzis, S.G. Kosionis, J. Boviatsis, E. Paspalakis, Nonlinear optical susceptibilities of semiconductor quantum dot-metal nanoparticle hybrids. J. Mod. Opt. 63, 451–461 (2016)

    Article  ADS  Google Scholar 

  26. Q. Li, K. Nakkeeran, P.K.A. Wai, Ultrashort pulse train generation using nonlinear optical fibers with exponentially decreasing dispersion. J. Opt. Soc. Am. B 31, 1786–1792 (2014)

    Article  ADS  Google Scholar 

  27. A. Mohamadou, C.G. LatchioTiofack, T.C. Kofané, Wave train generation of solitons in systems with higher-order nonlinearities. Phys. Rev. E 82, 016601 (2010)

    Article  ADS  Google Scholar 

  28. A.A. Goyal, R. Gupta, C.N. Kumar, T.S. Raju, Chirped femtosecond solitons and double-kink solitons in the cubic–quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84, 063830 (2011)

    Article  ADS  Google Scholar 

  29. A. Choudhuri, K. Porsezian, Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation. Phys. Rev. A 85, 033820 (2012)

    Article  ADS  Google Scholar 

  30. H. Triki, A. Biswas, D. Milović, M. Belić, Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic–quintic–septic nonlinearities. Opt. Commun. 366, 362–369 (2016)

    Article  ADS  Google Scholar 

  31. A. Greenberg, A. Joel, D.J. Gauthier, High-order optical nonlinearity at low light levels. J. Euro. Phys. Lett. 98, 24001 (2012)

    Article  ADS  Google Scholar 

  32. G. Fibich, N. Gavish, X.P. Wang, Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Physica D 231, 55–86 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Y.F. Chen, K. Beckwitt, F.W. Wise, B.G. Aitken, J.S. Sanghera, I.D. Aggarwal, Measurement of fifth- and seventh-order nonlinearities of glasses. J. Opt. Soc. Am. B 23, 347–352 (2006)

    Article  ADS  Google Scholar 

  34. A.S. Reyna, K.C. Jorge, C.B. de Araùjo, Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90, 063835 (2014)

    Article  ADS  Google Scholar 

  35. A.S. Reyna, C.B. de Araùjo, Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Exp. 22, 22456–22469 (2014)

    Article  Google Scholar 

  36. A. Biswas, Highly dispersive optical solitons with cubic–quintic–septic law by F-expansion. Optik 182, 897–906 (2019)

    Article  ADS  Google Scholar 

  37. A.A. Nair, A.B. Beevi, K. Subramanian, M.S. Mani Rajan, Influence of septic nonlinearity on modulation instability under normal and anomalous dispersion regime. Optik 204, 164114 (2020)

    Article  ADS  Google Scholar 

  38. K.K. Ndebele, C.B. Tabi, C.G.L. Tiofack, T.C. Kofané, Higher-order dispersion and nonlinear effects of optical fibers under septic self-steepening and self-frequency shift. Phys. Rev. E 104, 044208 (2021)

    Article  ADS  Google Scholar 

  39. A. Joshi, Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system. Phys. Rev. B 79, 115315 (2009)

    Article  ADS  Google Scholar 

  40. J.F. Dynes, E. Paspalakis, Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well. Phys. Rev. B 73, 233305 (2006)

    Article  ADS  Google Scholar 

  41. X. Hao, C. Ding, X.Y. Lü, J. Li, X. Yang, Controlled amplification, absorption, and dispersion of weak far-infrared lights in a coupled-quantum-well structure. Physica E 42, 1984–1989 (2010)

    Article  ADS  Google Scholar 

  42. M. Sahrai, H. Tajalli, K.T. Kapale, M. Zubairy, M. Suhail, Tunable phase control for subluminal to superluminal light propagation. Phys. Rev. A 70, 023813 (2004)

    Article  ADS  Google Scholar 

  43. M. Sahrai, M. Momeni-Demne, J. Poursamad, Phase controlled subluminal and superluminal light propagation in double quantum wells. J. Opt. Soc. Am. B 32, 1139–1145 (2015)

    Article  ADS  Google Scholar 

  44. S.H. Asadpour, H.R. Hamedi, M. Sahrai, Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system. J. Lumin. 132, 2188–2193 (2012)

    Article  Google Scholar 

  45. H.R. Hamedi, G. Juzeliūnas, Phase-sensitive Kerr nonlinearity for closed-loop quantum systems. Phys. Rev. A 91, 053823 (2005)

    Article  ADS  Google Scholar 

  46. Z. Wang, H. Fan, Phase-dependent optical bistability and multistability in a semiconductor quantum well system. J. Lumin. 130, 2084–2088 (2010)

    Article  Google Scholar 

  47. Y. Qi, Y. Niu, Y. Xiang, H. Wang, S. Gong, Phase dependence of cross-phase modulation in asymmetric quantum wells. Opt. Commun. 284, 276–281 (2010)

    Article  ADS  Google Scholar 

  48. H. Zhang, X. Li, D. Sun, H. Li, H. Sun, Phase control of highly efficient four-wave mixing in a six-level tripod atomic system. Appl. Opt. 57, 567–572 (2018)

    Article  ADS  Google Scholar 

  49. R. Mukherjee, S. Konar, P. Mishra, Phase-sensitive modulation instability in asymmetric coupled quantum wells. Phys. Rev. A 103, 033517 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  50. H.R. Hamedi, G. Juzeliūnas, Phase-sensitive Kerr nonlinearity for closed-loop quantum systems. Phys. Rev. A 91, 053823 (2015)

    Article  ADS  Google Scholar 

  51. M. Sahrai, Phase-sensitive Kerr nonlinearity in a three-level n-doped semiconductor quantum well. Eur. Phys. J. D 71, 238 (2017)

    Article  ADS  Google Scholar 

  52. M. Sahraia, A.H. Gharamaleki, Phase dependent Kerr nonlinearity via quantum interference. Eur. Phys. J. D 73, 129 (2019)

    Article  ADS  Google Scholar 

  53. A. Vafafard, M. Sahrai, H.R. Hamedi, S.H. Asadpour, Tunneling induced two-dimensional phase grating in a quantum well nanostructure via third and fifth orders of susceptibility. Sci. Rep. 10, 7389 (2020)

    Article  ADS  Google Scholar 

  54. Z. Wang, B. Yu, S. Zhen, X. Wu, Large refractive index without absorption via quantum interference in a semiconductor quantum well. J. Lumin. 134, 272–276 (2013)

    Article  Google Scholar 

  55. S.H. Asadpour, H.R. Hamedi, Giant Kerr nonlinearity in an n-doped semiconductor quantum well. Opt. Quant. Electron. 45, 11–20 (2013)

    Article  Google Scholar 

  56. M.O. Scually, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  57. Y. Wu, L. Deng, Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett. 93, 143904 (2004)

    Article  ADS  Google Scholar 

  58. Y. Wu, L. Deng, Ultraslow bright and dark optical solitons in a cold three-state medium. Opt. Lett. 29, 2064–2066 (2004)

    Article  ADS  Google Scholar 

  59. W.X. Yang, J.M. Hou, Y.Y. Lin, R.K. Lee, Detuning management of optical solitons in coupled quantum wells. Phys. Rev. A 79, 033825 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors NB and MN thank University of Science & Technology Meghalaya, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Mukherjee.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, M., Mukherjee, R. & Borgohain, N. Giant Kerr–quintic–septic nonlinearities in semiconductor quantum wells. Eur. Phys. J. Plus 137, 903 (2022). https://doi.org/10.1140/epjp/s13360-022-03106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03106-7

Navigation