Skip to main content
Log in

Diagnostics of a high-pressure DC magnetron argon discharge with an aluminium cathode

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this article, the plasma parameters of a direct current magnetron discharge in argon at moderate pressure (10 to 40 Pa) using an aluminium cathode are explored. The density of argon excited states, the sputtered aluminium atom density and the electron temperature are estimated using a collisional–radiative model. The electron temperature obtained using optical emission spectroscopic data agrees well with measurements taken using a Langmuir probe. The influence of the discharge parameters, namely the background argon pressure and the discharge current, are discussed.

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement.

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data will be made available upon request to the corresponding author.]

Notes

  1. The presence of small nanoparticle with diameter \(\ge \)10 nm can nevertheless not be ruled out

  2. The plasma is approximated by an infinite cylinder

References

  1. W.D. Gill, E. Kay, Efficient low pressure sputtering in a large inverted magnetron suitable for film synthesis. Rev. Sci. Instrum. 36, 277 (1965). https://doi.org/10.1063/1.1719553

    Article  ADS  Google Scholar 

  2. R.K. Waits, Planar magnetron sputtering. J. Vacuum Sci. Technol. 15, 179 (1978). https://doi.org/10.1116/1.569451

    Article  ADS  Google Scholar 

  3. T.E. Sheridan, M.J. Goeckner, J. Goree, Model of energetic electron transport in magnetron discharges. J. Vac. Sci. Technol. A Vac. Surf. Films 8, 30 (1990)

  4. D. Depla, W. Leroy, Magnetron sputter deposition as visualized by monte Carlo modeling. Thin Solid Films 520, 6337 (2012). https://doi.org/10.1016/j.tsf.2012.06.032

    Article  ADS  Google Scholar 

  5. M.L. Escrivão, A.M.C. Moutinho, M.J.P. Maneira, Planar magnetron glow discharge on copper: empirical and semiempirical relations. J. Vac. Sci. Technol. A 12, 723 (1994). https://doi.org/10.1116/1.578813

    Article  ADS  Google Scholar 

  6. S.M. Rossnagel, J. Hopwood, Metal ion deposition from ionized mangetron sputtering discharge. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 12, 449 (1994). https://doi.org/10.1116/1.587142

  7. K. Matyash, M. Fröhlich, H. Kersten, G. Thieme, R. Schneider, M. Hannemann, R. Hippler, Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. experiment and simulation. J. Phys. D Appl. Phys. 37, 2703 (2004)

  8. A.E. Farsy, J. Ledig, M. Desecures, J. Bougdira, L. de Poucques, Characterization of transport of titanium neutral atoms sputtered in Ar and Ar/N2 HIPIMS discharges. Plasma Sources Sci. Technol. 28, 035005 (2019). https://doi.org/10.1088/1361-6595/ab022b

    Article  ADS  Google Scholar 

  9. M. Cavarroc, M. Mikikian, Y. Tessier, L. Boufendi, Successive generations of dust in complex plasmas: a cyclic phenomenon in the void region. Phys. Rev. Lett. 100, 045001 (2008). https://doi.org/10.1103/PhysRevLett.100.045001

    Article  ADS  Google Scholar 

  10. I. Stefanović, N. Sadeghi, J. Winter, The influence of \(\rm C_{{\rm 2}} {\rm H}_{{\rm 2}}\) and dust formation on the time dependence of metastable argon density in pulsed plasmas. J. Phys. D Appl. Phys. 43, 152003 (2010)

    Article  ADS  Google Scholar 

  11. D. Samsonov, J. Goree, Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59, 1047 (1999)

    Article  ADS  Google Scholar 

  12. M. Mikikian, M. Cavarroc, L. Couëdel, L. Boufendi, Low frequency instabilities during dust particle growth in a radio-frequency plasma. Phys. Plasmas 13, 092103 (2006)

    Article  ADS  Google Scholar 

  13. G.M. Jellum, D.B. Graves, Particulates in aluminum sputtering discharges. J. Appl. Phys. 67, 6490 (1990). https://doi.org/10.1063/1.346081

    Article  ADS  Google Scholar 

  14. C. Arnas, A. Michau, G. Lombardi, L. Couëdel, K. Kishor Kumar, Effects of the growth and the charge of carbon nanoparticles on dc discharges. Phys. Plasmas 20, 013705 (2013)

  15. K. Kishor Kumar, L. Couëdel, C. Arnas, Growth of the growth and the charge of carbon nanoparticles on dc discharges. Phys. Plasmas 20, 013705 (2013)

  16. L. Couëdel, K. Kishor Kumar, C. Arnas, Detrapping of tungsten nanoparticles in a direct-current argon glow discharge. Phys. Plasmas 21, 123703 (2014). https://doi.org/10.1063/1.4903465

  17. S. Barbosa, L. Couëdel, C. Arnas, K. Kishor Kumar, C.Pardanaud, F. R. A. Onofri. In–situ characterisation of the dynamics of a growing dust particle cloud in a direct–current argon glow discharge. J. Phys. D. Appl. Phys 49, 045203 (2016). https://stacks.iop.org/0022--3727/49/i=4/a=045203

  18. H. Haberland, M. Mall, M. Moseler, Y. Qiang, T. Reiners, Y. Thurner, Filling of micron-sized contact holes with copper by energetic cluster impact. J. Vac. Sci. Technol., A 12, 2925 (1994). https://doi.org/10.1116/1.578967

  19. A. Majumdar, D. Köpp, M. Ganeva, D. Datta, S. Bhattacharyya, R. Hippler, Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature. Rev. Sci. Instrum. 80, 095103 (2009). https://doi.org/10.1063/1.3213612

    Article  ADS  Google Scholar 

  20. T. Momin, A. Bhowmick, A new magnetron based gas aggregation source of metal nanoclusters coupled to a double time-of-flight mass spectrometer system. Rev. Sci. Instrum. 81, 075110 (2010). https://doi.org/10.1063/1.3465304

    Article  ADS  Google Scholar 

  21. V. Bouchat, O. Feron, B. Gallez, B. Masereel, C. Michiels, T. V. Borght, S. Lucas, Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension, Surf. Coat. In: Technol. 205, Supplement 2, S577, pSE 2010 Special Issue: Proceedings of the 12th International Conference on Plasma Surface Engineering (2011) https://doi.org/10.1016/j.surfcoat.2011.03.055

  22. N.K. Manninen, N.M. Figueiredo, S. Carvalho, A. Cavaleiro, Production and characterization of Ag nanoclusters produced by plasma gas condensation. Plasma Processes Polym. 11, 629 (2014)

    Article  Google Scholar 

  23. M.V. Dutka, A.A. Turkin, D.I. Vainchtein, J.T.M. De Hosson, On the formation of copper nanoparticles in nanocluster aggregation source. J. Vac. Sci. Technol. A 33, 031509 (2015). https://doi.org/10.1116/1.4917002

    Article  Google Scholar 

  24. J. Kousal, A. Kolpaková, A. Shelemin, P. Kudrna, M. Tichý, O. Kylián, J. Hanuš, A. Choukourov, H. Biederman, Monitoring of conditions inside gas aggregation cluster source during production of Ti/TiOx nanoparticles. Plasma Sources Sci. Technol. 26, 105003 (2017)

    Article  ADS  Google Scholar 

  25. T. Acsente, R. Negrea, L. Nistor, E. Matei, C. Grisolia, R. Birjega, G. Dinescu, Tungsten nanoparticles with controlled shape and crystallinity obtained by magnetron sputtering and gas aggregation. Mater. Lett. 200, 121 (2017). https://doi.org/10.1016/j.matlet.2017.04.105

    Article  Google Scholar 

  26. M. Vaidulych, J. Hanuš, J. Kousal, S. Kadlec, A. Marek, I. Khalakhan, A. Shelemin, P. Solař, A. Choukourov, O. Kylián, H. Biederman, Effect of magnetic field on the formation of Cu nanoparticles during magnetron sputtering in the gas aggregation cluster source. Plasma Processes Polym. 16, 1900133 (2019). https://doi.org/10.1002/ppap.201900133

    Article  Google Scholar 

  27. M. Koten, S. Voeller, M. Patterson, J. Shield, In situ measurements of plasma properties during gas-condensation of Cu nanoparticles. J. Appl. Phys. 119, 114306 (2016)

    Article  ADS  Google Scholar 

  28. J. Kousal, A. Shelemin, M. Schwartzkopf, O. Polonskyi, J. Hanuš, P. Solař, M. Vaidulych, D. Nikitin, P. Pleskunov, Z. Krtouš et al., Magnetron-sputtered copper nanoparticles: lost in gas aggregation and found by in situ x-ray scattering. Nanoscale 10, 18275 (2018)

    Article  Google Scholar 

  29. H. Hahn, R.S. Averback, The production of nanocrystalline powders by magnetron sputtering. J. Appl. Phys. 67, 1113 (1990). https://doi.org/10.1063/1.345798

    Article  ADS  Google Scholar 

  30. N. Nafarizal, K. Sasaki, Synthesis characteristics of cu particulates in high-pressure magnetron sputtering plasmas studied by in situ laser-light scattering. J. Phys. D Appl. Phys. 45, 505202 (2012)

    Article  ADS  Google Scholar 

  31. L. Couëdel, C. Arnas, T. Acsente, A. Chami, Characterisation of a high-pressure direct-current magnetron discharge used for tungsten nanoparticle production. AIP Conf. Proc. 1925, 020020 (2018). https://doi.org/10.1063/1.5020408

    Article  Google Scholar 

  32. C. Arnas, A. Chami, L. Couëdel, T. Acsente, M. Cabié, T. Neisius, Thermal balance of tungsten monocrystalline nanoparticles in high pressure magnetron discharges. Phys. Plasmas 26, 053706 (2019). https://doi.org/10.1063/1.5095932

    Article  ADS  Google Scholar 

  33. A. Chami, C. Arnas, Spatial distributions of plasma parameters in conventional magnetron discharges in presence of nanoparticles. J. Plasma Phys. 86, 905860512 (2020). https://doi.org/10.1017/S0022377820001014

    Article  Google Scholar 

  34. S. Mitic, M. Y. Pustylnik, G. E. Morfill, Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma. New J. Phys 11, 083020. http://stacks.iop.org/1367-2630/11/i=8/a=083020 (2009)

  35. S. Mitic, B. Klumov, M. Pustylnik, G. Morfill, Determination of electron temperature in low-pressure plasmas by means of optical emission spectroscopy. JETP Lett. 91, 231 (2010)

    Article  ADS  Google Scholar 

  36. S.M. Rossnagel, H.R. Kaufman, Current-voltage relations in magnetrons. J. Vac. Sci. Technol. A 6, 223 (1988). https://doi.org/10.1116/1.574985

    Article  ADS  Google Scholar 

  37. D. Depla, G. Buyle, J. Haemers, R. De Gryse, Discharge voltage measurements during magnetron sputtering. Surf. Coat. Technol. 200, 4329 (2006). https://doi.org/10.1016/j.surfcoat.2005.02.166

    Article  Google Scholar 

  38. G. Buyle, D. Depla, K. Eufinger, J. Haemers, R.D. Gryse, W.D. Bosscher, Simplified model for calculating the pressure dependence of a direct current planar magnetron discharge. J. Vac. Sci. Technol. A Vac. Surf. Films 21, 1218 (2003). https://doi.org/10.1116/1.1572169

  39. G. Buyle, D. Depla, K. Eufinger, J. Haemers, W. Bosscher, R. Gryse, Simplified model for the DC planar magnetron discharge, Vacuum 74, 353, in selected papers revised from the Proceedings of the Seventh International Symposium on Sputtering and Plasma Processes (ISSP 2003). https://doi.org/10.1016/j.vacuum.2004.01.014

  40. R.L. Merlino, Understanding Langmuir probe current-voltage characteristics. Am. J. Phys. 75, 1078 (2007)

    Article  ADS  Google Scholar 

  41. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  42. X.-M. Zhu, Y.-K. Pu, A simple collisional-radiative model for low-temperature argon discharge with pressure ranging from 1 pa to atmospheric pressure: kinetics of paschen 1s and 2p levels. J. Phys. D Appl. Phys. 43, 015204 (2010)

    Article  ADS  Google Scholar 

  43. J. Kaupe, D. Coenen, S. Mitic, Phase-resolved optical emission spectroscopy of a transient plasma created by a low-pressure dielectric barrier discharge jet. Plasma Sources Sci. Technol. 27, 105003 (2018)

    Article  ADS  Google Scholar 

  44. J. Kaupe, P. Riedl, D. Coenen, S. Mitic, Temporal evolution of electron density and temperature in low pressure transient Ar/N2 plasmas estimated by optical emission spectroscopy. Plasma Sources Sci. Technol. 28, 065012 (2019). https://doi.org/10.1088/1361-6595/ab252d

    Article  ADS  Google Scholar 

  45. S. Mitic, J. Kaupe, P. Riedl, D. Coenen, Comparative studies of compact kHz and MHz driven low pressure plasmas by emission and laser spectroscopy. Phys. Plasmas 26, 073507 (2019)

    Article  ADS  Google Scholar 

  46. T. Holstein, Imprisonment of resonance radiation in gases. Phys. Rev. 72, 12 (1947)

    Article  Google Scholar 

  47. P.J. Walsh, Effect of simultaneous doppler and collisional broadening and a hyperfine structure on the imprisonment of resonance radiation. Phys. Rev. 116, 3 (1959)

    Article  Google Scholar 

  48. M. Schulze, A. von Yanguas-Gil, P. Awakowitz, Keudell, A robust method to measure metastable and resonant state densities from emission spectra in argon and argon-diluted low pressure plasmas. J. Phys. D: Appl. Phys. 41, 065206 (2008)

  49. R. Mewe, Relative intensity of helium spectral lines as a function of electron temperature and density. Br. J. Appl. Phys. 18, 107 (1967). https://doi.org/10.1088/0508-3443/18/1/315

    Article  ADS  Google Scholar 

  50. NIST database. https://www.nist.gov (2020)

  51. NGFSRDW database, retrieved on June 17, 2020. and BSR database. www.lxcat.net. Retrieved on June 17, 2020 (2020)

  52. V. Gedeon, S. Gedeon, V. Lazur, E. Nagy, O. Zatsarinny, K. Bartschat, \(b\)-spline \(r\)-matrix-with-pseudostates calculations for electron collisions with aluminum. Phys. Rev. A 92, 052701 (2015). https://doi.org/10.1103/PhysRevA.92.052701

    Article  ADS  Google Scholar 

  53. J. Trieschmann, S. Ries, N. Bibinov, P. Awakowicz, S. Mráz, J.M. Schneider, T. Mussenbrock, Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma. Plasma Sources Sci. Technol. 27, 054003 (2018). https://doi.org/10.1088/1361-6595/aac23e

    Article  ADS  Google Scholar 

  54. K. Sasaki, N. Nafarizal, Enhancement of Ti + density in high-pressure magnetron sputtering plasmas. J. Phys. D Appl. Phys. 43, 124012 (2010)

    Article  ADS  Google Scholar 

  55. F.J. Jimenez, S.K. Dew, Comprehensive computer model for magnetron sputtering. I. Gas heating and rarefaction. J. Vac. Sci. Technol. A 30, 041302 (2012). https://doi.org/10.1116/1.4712534

  56. A.E. Wendt, M.A. Lieberman, Spatial structure of a planar magnetron discharge. J. Vac. Sci. Technol. A 8, 902 (1990). https://doi.org/10.1116/1.576894

    Article  ADS  Google Scholar 

  57. J. Hopwood, F. Qian, Mechanisms for highly ionized magnetron sputtering. J. Appl. Phys. 78, 758 (1995). https://doi.org/10.1063/1.360334

    Article  ADS  Google Scholar 

  58. C. Christou, Z.H. Barber, Ionization of sputtered material in a planar magnetron discharge. J. Vac. Sci. Technol. A Vac. Surf. Films 18, 2897 (2000). https://doi.org/10.1116/1.1312370

  59. I. Stefanović, T. Kuschel, S. Schröter, M. Böke, Argon metastable dynamics and lifetimes in a direct current microdischarge. J. Appl. Phys. 116, 113302 (2014). https://doi.org/10.1063/1.4895714

  60. Cross sections extracted from program magboltz, version 7.1 june 2004, biagi-v7.1 database, www.lxcat.net, retrieved on April 20, 2021. https://www.lxcat.net/Biagi-v7.1 ( 2021)

Download references

Acknowledgements

LC acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN201904333.

Author information

Authors and Affiliations

Authors

Contributions

SM did the OES analysis and wrote the corresponding section. JM did Langmuir probe analysis and edited the manuscript. CA participated in the experimental measurement campaign and edited the manuscript. LC participated in the experimental measurement campaign and wrote Sects. 1, 2, 3, 6 and 7.

Corresponding author

Correspondence to L. Couëdel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitic, S., Moreno, J., Arnas, C. et al. Diagnostics of a high-pressure DC magnetron argon discharge with an aluminium cathode. Eur. Phys. J. D 75, 240 (2021). https://doi.org/10.1140/epjd/s10053-021-00239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00239-9

Navigation