Skip to main content
Log in

Coulomb correlation and information entropies in confined helium-like atoms

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The present work studies aspects of the electronic correlation in confined \(\hbox {H}^{-}\), He and \(\hbox {Li}^+\) atoms in their ground states using the informational entropies. In this way, different variational wavefunctions are employed in order of better take account of Coulomb correlation. The obtained values for the \(S_r\), \(S_p\) and \(S_t\) entropies are sensitive in relation to Coulomb correlation effects. In the strong confinement regime, the effects of the Coulomb correlation are negligible and the employment of the models of independent particle and two non-interacting electrons confined by a impenetrable spherical cage gains importance in this regime. Lastly, energy values are obtained in good agreement with the results available in the literature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material.

References

  1. P. Fulde, Electron Correlation in Molecules and Solids (Springer, Berlin, 1995). https://doi.org/10.1007/978-3-642-57809-0

    Book  Google Scholar 

  2. R.P. Sagar, H.G. Laguna, N.L. Guevara, Chem. Phys. Lett. 514, 352 (2011). https://doi.org/10.1016/j.cplett.2011.08.032

    Article  ADS  Google Scholar 

  3. D.P. Tew, W. Klopper, T. Helgaker, J. Comp. Chem. 28, 1307 (2007). https://doi.org/10.1002/jcc.20581

    Article  Google Scholar 

  4. L. Rincon, F.J. Torres, M. Becerra, S. Liu, A. Fritsch, R. Almeida, Mol. Phys. 117(5), 610 (2019). https://doi.org/10.1080/00268976.2018.1530462

    Article  ADS  Google Scholar 

  5. P.O. Löwdin, Adv. Chem. Phys. 2, 207 (1958). https://doi.org/10.1002/9780470143483.ch8

    Article  Google Scholar 

  6. A.L. Baskerville, A.W. King, H. Cox, R. Soc. opens ci. 6, 181357 (2019). https://doi.org/10.1098/rsos.181357

    Article  ADS  Google Scholar 

  7. A. Mohajeri, M. Alipour, J. Mol. Struct.: THEOCHEM 907, 115 (2009). https://doi.org/10.1016/j.theochem.2009.04.036

    Article  Google Scholar 

  8. S.P. McCarthy, A.J. Thakkar, Chem. Phys. Lett. 494, 312 (2010). https://doi.org/10.1016/j.cplett.2010.05.095

    Article  ADS  Google Scholar 

  9. O. Rioul, Théorie de l’information et du codage (Lavoisier, Paris, 2007)

    Google Scholar 

  10. C. Shannon, Bell Syst. Tech. J. 27, 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  11. Z.X. Wang, L.Y. He, D.D. Li, Energy Policy 132, 429 (2019). https://doi.org/10.1016/j.enpol.2019.06.002

    Article  Google Scholar 

  12. Z. Liu, P. Shang, Phys. A (Amsterdam, Neth.) 505, 1170 (2018). https://doi.org/10.1016/j.physa.2018.04.041

    Article  ADS  Google Scholar 

  13. O. Olendski, Ann. Phys. (Berlin) 530, 1700324 (2018). https://doi.org/10.1002/andp.201700324

    Article  MathSciNet  ADS  Google Scholar 

  14. W.S. Nascimento, M.M. de Almeida, F.V. Prudente, Eur. J. Phys. 41(2), 025405 (2020). https://doi.org/10.1088/1361-6404/ab5f7d

    Article  Google Scholar 

  15. A. Ghosal, N. Mukherjee, A.K. Roy, Ann. Phys. (Berlin) 528(11–12), 796 (2016). https://doi.org/10.1002/andp.201600121

    Article  ADS  Google Scholar 

  16. H.G. Laguna, R.P. Sagar, Ann. Phys. (Berlin) 526(11–12), 555 (2014). https://doi.org/10.1002/andp.201400156

    Article  ADS  Google Scholar 

  17. G.H. Sun, S.H. Dong, N. Saad, Ann. Phys. (Berlin) 525(12), 934 (2013). https://doi.org/10.1002/andp.201300089

    Article  ADS  Google Scholar 

  18. C.R. Estañón, N. Aquino, D.D. Puertas-Centeno, J.S. Dehesa, Int. J. Quantum Chem. 120(11), e26192 (2020). https://doi.org/10.1002/qua.26192

    Article  Google Scholar 

  19. N. Mukherjee, A.K. Roy, Eur. Phys. J. D 72, 118 (2018). https://doi.org/10.1140/epjd/e2018-90104-1

    Article  ADS  Google Scholar 

  20. M.A. Martínez-Sánchez, R. Vargas, J. Garza, Quantum Rep. 1, 208 (2019). https://doi.org/10.3390/quantum1020018

    Article  Google Scholar 

  21. W.S. Nascimento, F.V. Prudente, Chem. Phys. Lett. 691, 401 (2018). https://doi.org/10.1016/j.cplett.2017.11.048

    Article  ADS  Google Scholar 

  22. S.J.C. Salazar, H.G. Laguna, V. Prasad, R.P. Sagar, Int. J. Quantum Chem. 120(11), e26188 (2020). https://doi.org/10.1002/qua.26188

    Article  Google Scholar 

  23. J.S. Dehesa, E.D. Belega, I.V. Toranzo, A.I. Aptekarev, Int. J. Quantum Chem. 119(18), e25977 (2019). https://doi.org/10.1002/qua.25977

    Article  Google Scholar 

  24. J.H. Ou, Y.K. Ho, Int. J. Quantum Chem. 119(14), e25928 (2019). https://doi.org/10.1002/qua.25928

    Article  Google Scholar 

  25. I. Nasser, M. Zeama, A.A.-Hady, Mol. Phys. 118(3), 1612105 (2020). https://doi.org/10.1080/00268976.2019.1612105

  26. I. Nasser, M. Zeama, A. A.-Hady, Results Phys. 7, 3892 (2017). https://doi.org/10.1016/j.rinp.2017.10.013

  27. K.D. Sen, J. Chem. Phys. 123, 074110 (2005). https://doi.org/10.1063/1.2008212

    Article  ADS  Google Scholar 

  28. S. Majumdar, A. Roy, Quantum Rep. 2, 189 (2020). https://doi.org/10.3390/quantum2010012

    Article  Google Scholar 

  29. C.H. Lin, Y.K. Ho, Chem. Phys. Lett. 689, 116 (2017). https://doi.org/10.1016/j.cplett.2017.10.007

    Article  ADS  Google Scholar 

  30. J.H.O. Lin, Y.K. Ho, Atoms 5, 15 (2017). https://doi.org/10.3390/atoms5020015

    Article  ADS  Google Scholar 

  31. I. Nasser, M. Zeama, A. Abdel-Hady, Phys. Scr. 95(9), 095401 (2020). https://doi.org/10.1088/1402-4896/abaa09

    Article  ADS  Google Scholar 

  32. C. Martínez-Flores, Phys. Lett. A 386, 126988 (2021). https://doi.org/10.1016/j.physleta.2020.126988

    Article  MathSciNet  Google Scholar 

  33. C. Martínez-Flores, M. Martínez-Sánchez, R. Vargas, J. Garza, Eur. Phys. J. D 75, 100 (2021). https://doi.org/10.1140/epjd/s10053-021-00110-x

    Article  ADS  Google Scholar 

  34. A. Michels, J. de Boer, A. Bijl, Physica (Amsterdam) 4, 981 (1937). https://doi.org/10.1016/S0031-8914(37)80196-2

    Article  ADS  Google Scholar 

  35. V. Fock, Z. Phys. 47, 446 (1928). https://doi.org/10.1007/BF01390750

    Article  ADS  Google Scholar 

  36. C.G. Darwin, Math. Proc. Cambridge Philos. Soc. 27, 86 (1931). https://doi.org/10.1017/S0305004100009373

    Article  ADS  Google Scholar 

  37. R. Dutt, A. Mukherjee, Y.P. Varshni, Phys. Lett. A 280, 318 (2001). https://doi.org/10.1016/S0375-9601(01)00067-6

    Article  ADS  Google Scholar 

  38. J.F. da Silva, F.R. Silva, E. Drigo Filho, Int. J. Quantum Chem. 116, 497 (2016). https://doi.org/10.1002/qua.25084

    Article  Google Scholar 

  39. A. Flores-Riveros, A. Rodríguez-Contreras, Phys. Lett. A 372(40), 6175 (2008). https://doi.org/10.1016/j.physleta.2008.08.027

    Article  ADS  Google Scholar 

  40. M.F. Hasoglu, H.L. Zhou, S.T. Manson, Phys. Rev. A 93, 022512 (2016). https://doi.org/10.1103/PhysRevA.93.022512

    Article  ADS  Google Scholar 

  41. S.B. Doma, F.N. El-Gammal, J. Theor. Appl. Phys. 6, 28 (2012). https://doi.org/10.1186/2251-7235-6-28

    Article  ADS  Google Scholar 

  42. J.P. Connerade, Eur. Phys. J. D 74, 211 (2020). https://doi.org/10.1140/epjd/e2020-10414-y

    Article  ADS  Google Scholar 

  43. S. Saha, J. Jose, Int. J. Quantum Chem. 120(22), e26374 (2020). https://doi.org/10.1002/qua.26374

    Article  Google Scholar 

  44. M. Rodriguez-Bautista, R. Vargas, N. Aquino, J. Garza, Int. J. Quantum Chem. 118(13), e25571 (2018). https://doi.org/10.1002/qua.25571

    Article  Google Scholar 

  45. S. LumbTalwar, S. Lumb, V. Prasad, Eur. Phys. J. D 75, 59 (2021). https://doi.org/10.1140/epjd/s10053-021-00064-0

    Article  ADS  Google Scholar 

  46. A.M. Maniero, C.R. de Carvalho, F.V. Prudente, Ginette Jalbert, J. Phys. B: At., Mol. Opt. Phys 53(18), 185001 (2020). https://doi.org/10.1088/1361-6455/ab9f0f

  47. H. de Oliveira Batael, E. Drigo Filho, J. Chahine, Eur. Phys. J. D 75, 52 (2021). https://doi.org/10.1140/epjd/s10053-021-00057-z

    Article  ADS  Google Scholar 

  48. F.V. Prudente, M.N. Guimarães, in Electronic Structure of Quantum Confined Atoms and Molecules, ed. by K.D. Sen (Springer, Cham, 2014), chap. 5, pp. 101–143. https://doi.org/10.1007/978-3-319-09982-8_5

  49. R. Hernández-Esparza, B. Landeros-Rivera, R. Vargas, J. Garza, Ann. Phys. (Berlin) 531(7), 1800476 (2019). https://doi.org/10.1002/andp.201800476

    Article  ADS  Google Scholar 

  50. L.F. Pasteka, T. Helgaker, T. Saue, D. Sundholm, H.J. Werner, M. Hasanbulli, J. Major, P. Schwerdtfeger, Mol. Phys. 118(19–20), e1730989 (2020). https://doi.org/10.1080/00268976.2020.1730989

    Article  ADS  Google Scholar 

  51. W.S. Nascimento, F.V. Prudente, Quim. Nova 39, 757 (2016). https://doi.org/10.5935/0100-4042.20160045

    Article  Google Scholar 

  52. S. Saha, J. Jose, Phys. Rev. A 102, 052824 (2020). https://doi.org/10.1103/PhysRevA.102.052824

    Article  ADS  Google Scholar 

  53. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 122, 084101 (2005). https://doi.org/10.1063/1.1848092

    Article  ADS  Google Scholar 

  54. L.D. Site, Int. J. Quantum Chem. 115(19), 1396 (2014). https://doi.org/10.1002/qua.24823

    Article  Google Scholar 

  55. H.T. Peng, Y.K. Ho, Entropy 17, 1882 (2015). https://doi.org/10.3390/e17041882

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Mohajeri, M. Alipour, Chem. Phys. 360, 132 (2009). https://doi.org/10.1016/j.chemphys.2009.04.016

    Article  Google Scholar 

  57. R.P. Sagar, N.L. Guevara, J. Chem. Phys. 124, 134101 (2006). https://doi.org/10.1063/1.2180777

    Article  ADS  Google Scholar 

  58. R.O. Esquivelt, A.N. Tripathi, R.P. Sagar, V.H.J. Smith, J. Phys. B: At. Mol. Opt. Phys. 25, 2925 (1992). https://doi.org/10.1088/0953-4075/25/13/003

    Article  ADS  Google Scholar 

  59. A.N. Tripathi, R.P. Sagar, R.O. Esquivel, V.H.J. Smith, Phys. Rev. A 45, 4385 (1992). https://doi.org/10.1103/PhysRevA.45.4385

    Article  ADS  Google Scholar 

  60. R.P. Sagar, M. Hô, J. Mex. Chem. Soc. 52(1), 60 (2008)

    Google Scholar 

  61. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975). https://doi.org/10.1007/BF01608825

    Article  ADS  Google Scholar 

  62. H.H. Corzo, H.G. Laguna, R.P. Sagar, J. Math. Chem. 50, 233 (2012). https://doi.org/10.1007/s10910-011-9908-2

    Article  MathSciNet  Google Scholar 

  63. E.A. Hylleraas, in Advances in Quantum Chemistry, vol. 1, ed. by P.O. Löwdin (Academic Press, 1964), pp. 1–33. https://doi.org/10.1016/S0065-3276(08)60373-1

  64. F.S. Carvalho, J.P. Braga, Quim. Nova 40(10), 1259 (2017). https://doi.org/10.21577/0100-4042.20170125

    Article  Google Scholar 

  65. C.A. Ten Seldam, R. De Groot, Physica 18(11), 891 (1952). https://doi.org/10.1016/S0031-8914(52)80223-X

    Article  ADS  Google Scholar 

  66. X.Y. Pan, V. Sahni, L. Massa, arXiv:physics/0310128 (2003)

  67. B.M. Gimarc, J. Chem. Phys. 47(12), 5110 (1967). https://doi.org/10.1063/1.1701767

    Article  ADS  Google Scholar 

  68. S. Chandrasekhar, Astrophys. J. 100, 176 (1944). https://doi.org/10.1086/144654

    Article  ADS  Google Scholar 

  69. R.N. Hill, Phys. Rev. Lett. 38(12), 643 (1977). https://doi.org/10.1103/PhysRevLett.38.643

    Article  ADS  Google Scholar 

  70. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two- electron Atoms (Springer-Verlag, Berlin, 1977)

    Book  Google Scholar 

  71. C. Le Sech, A. Banerjee, J. Phys. B: At. Mol. Opt. Phys. 44(10), 105003 (2011). https://doi.org/10.1088/0953-4075/44/10/105003

    Article  ADS  Google Scholar 

  72. C.N. Isonguyo, K.J. Oyewumi, O.S. Oyun, Int. J. Quantum Chem. 118(15), e25620 (2018). https://doi.org/10.1002/qua.25620

    Article  Google Scholar 

  73. N. Aquino, A. Flores-Riveros, J. Rivas-Silva, Phys. Lett. A 377(34), 2062 (2013). https://doi.org/10.1016/j.physleta.2013.05.048

    Article  MathSciNet  ADS  Google Scholar 

  74. F.G.F.A. de Saavedra, E. Buendía, Z Phys D - Atoms. Molecules and Clusters 38, 25 (1996). https://doi.org/10.1007/s004600050058

    Article  Google Scholar 

  75. C.H. Lin, Y.K. Ho, Chem. Phys. Lett. 633, 261 (2015). https://doi.org/10.1016/j.cplett.2015.05.029

  76. R.G. Parr, Y. Weitao, Density-functional theory of atoms and molecules. International series of monographs on chemistry 16 (Oxford University Press, 1994)

  77. Á. Nagy, Phys. Rep. 298(1), 1 (1998). https://doi.org/10.1016/S0370-1573(97)00083-5

    Article  ADS  Google Scholar 

  78. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 119(14), 7030 (2003). https://doi.org/10.1063/1.1605932

    Article  ADS  Google Scholar 

  79. H. Montgomery, N. Aquino, A. Flores-Riveros, Phys. Lett. A 374(19), 2044 (2010). https://doi.org/10.1016/j.physleta.2010.02.074

    Article  ADS  Google Scholar 

  80. N. Aquino, A. Flores-Riveros, J. Rivas-Silva, Phys. Lett. A 307(5), 326 (2003). https://doi.org/10.1016/S0375-9601(02)01767-X

    Article  ADS  Google Scholar 

  81. A. Flores-Riveros, N. Aquino, H. Montgomery, Phys. Lett. A 374(10), 1246 (2010). https://doi.org/10.1016/j.physleta.2009.12.062

    Article  ADS  Google Scholar 

  82. T.N. Barbosa, M.M. Almeida, F.V. Prudente, J. Phys. B: At., Mol. Opt. Phys. 48(5), 055002 (2015). https://doi.org/10.1088/0953-4075/48/5/055002

    Article  ADS  Google Scholar 

  83. F.V. Prudente, L.S. Costa, J.D.M. Vianna, J. Chem. Phys. 123(22), 224701 (2005). https://doi.org/10.1063/1.2131068

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Brazilian agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) through grants to the authors. The authors thank the referees for careful reading of the manuscript and for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Wallas Santos Nascimento.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 138 KB)

Appendix A:

Appendix A:

The \(2e^{-}\) system consists of two non-interacting electrons confined in an impenetrable spherical cage. The non-relativistic Hamiltonian in atomic units for one electron confined in an impenetrable spherical cage, \(e^{-}\), is

$$\begin{aligned} {\hat{H}} = -\frac{1}{2} \nabla ^2 + V_c (r) \ . \end{aligned}$$
(A.1)

The confining potential is defined as

$$\begin{aligned} V_c (r)= \left\{ \begin{array}{ccc} 0 &{} \mathrm {for} &{} 0< r < r_c \\ \infty &{} \mathrm {for} &{} r \ge r_c \end{array}\right. , \end{aligned}$$
(A.2)

being \(r_c \) the confinement radius. The ground state wavefunction is

$$\begin{aligned} \phi (r) = A\left[ \frac{\sin \left( \pi r / r_c \right) }{r}\right] \left( \frac{1}{4 \pi } \right) \ , \end{aligned}$$
(A.3)

where A is a normalization constant. In this background, for the \(2e^{-}\) system the expectation values of the energy, beyond the entropic quantities, are the double of the values obtained for the \(e^{-}\) system. The \(S_r\), \(S_p\), \(S_t\) and \(\langle E \rangle \) values as a function of \(r_c\) for the \(2e^{-}\) system in ground state are available in Table S5 of the Supplementary Material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, W.S., de Almeida, M.M. & Prudente, F.V. Coulomb correlation and information entropies in confined helium-like atoms. Eur. Phys. J. D 75, 171 (2021). https://doi.org/10.1140/epjd/s10053-021-00177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00177-6

Navigation