Skip to main content
Log in

On the applications of the modified semiempirical method for Stark broadening: the example of the alkali-like ion Sr II

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, the different methods of Stark width calculations are presented briefly: We started with the fully relativistic method (Elabidi et al. 2004), after that the semiclassical perturbation (SCP) method (Sahal-Bréchot et al. 2014), the semiempirical (SE) method (Griem 1968), the modified semiempirical (MSE) method (Dimitrijević and Konjević 1980), the simplified modified semiempirical (SMSE) method (Dimitrijević and Konjević 1987) and the simplified formula (SF) methods as the Cowley formula (Cowley 1971). After that, by using the modified semiempirical (MSE) method, we calculated Stark widths for 12 Sr II multiplets for temperatures from 5000 to 50,000 K and electron density of \(10^{17}\hbox { cm }^{-3}\) and compared them to other theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data are in the article.]

References

  1. M.S. Dimitrijević, N. Konjević, J. Quant. Spectrosc. Radiat. Transfer 24, 451 (1980)

    Article  ADS  Google Scholar 

  2. D. Hadžiomerspahić, M. Platiša, N. Konjević, M. Popović, Z. für Physik A Hadrons and nuclei 262, 169–179 (1973)

    Article  Google Scholar 

  3. C. Fleurier, S. Sahal-Bréchot, J. Chapelle, J. Quant. Spectrosc. Radiat. Transfer 17, 595–604 (1977)

    Article  ADS  Google Scholar 

  4. M. Burger, J. Hermann, Spectrochim. Acta, Part B 122, 118–126 (2016)

    Article  ADS  Google Scholar 

  5. B. Duan, M.A. Bari, Z.Q. Wu, Y. Yan, Y.M. Li, Astron. Astrophys. 555, A144 (2013)

    Article  ADS  Google Scholar 

  6. N. Konjević, M.S. Dimitrijević, W.L. Wiese, J. Phys. Chem. Ref. Data 13, 649–686 (1984)

    Article  ADS  Google Scholar 

  7. H. Elabidi, N. Ben Nessib, S. Sahal-Bréchot, J. Phys. B: Atomic, Molecular Optical Phys. 37, 63 (2004)

    Article  ADS  Google Scholar 

  8. S. Sahal-Bréchot, Astron. Astrophys. 1, 91 (1969)

    ADS  Google Scholar 

  9. S. Sahal-Bréchot, Astron. Astrophys. 2, 322 (1969)

    ADS  Google Scholar 

  10. S. Sahal-Bréchot, M.S. Dimitrijević, N. Ben Nessib, Atoms 2, 225 (2014)

    Article  ADS  Google Scholar 

  11. H.R. Griem, Phys. Rev. 165, 258 (1968)

    Article  ADS  Google Scholar 

  12. M.S. Dimitrijević, V. Kršljanin, Astron. Astrophys. 165, 269–274 (1986)

    ADS  Google Scholar 

  13. M.S. Dimitrijević, N. Konjević, Astron. Astrophys. 102, 93–96 (1981)

    ADS  Google Scholar 

  14. M.S. Dimitrijević, N. Konjević, Astron. Astrophys. 172, 345–349 (1987)

    ADS  Google Scholar 

  15. M.S. Dimitrijević, N. Konjević, Spectral Line Shapes, p. 211 (1981)

  16. M.S. Dimitrijević, Data 5, 73 (2020)

    Article  Google Scholar 

  17. C.R. Cowley, The Observatory 91, 139 (1971)

    ADS  Google Scholar 

  18. Z. Majlinger, Z. Simić, M.S. Dimitrijević, Mon. Not. R. Astron. Soc. 470, 1911–1918 (2017)

    Article  ADS  Google Scholar 

  19. J. Purić, M. Platiša, N. Konjević, Z. für Physik A Hadrons and nuclei 247, 216–222 (1971)

    Article  Google Scholar 

  20. J. Purić, N. Konjević, Z. für Physik 249, 440–444 (1972)

    Article  ADS  Google Scholar 

  21. N. Konjević, W.L. Wiese, J. Phys. Chem. Ref. Data 5, 259–308 (1976)

    Article  ADS  Google Scholar 

  22. B. Duan, M.A. Bari, Z.Q. Wu, Y. Yan, Y.M. Li, Phys. Rev. A 87, 032505 (2013)

    Article  ADS  Google Scholar 

  23. M.S. Dimitrijević, S. Sahal-Bréchot, J. Quant. Spectrosc. Radiat. Transfer 48, 397–403 (1992)

    Article  ADS  Google Scholar 

  24. S. Sahal-Bréchot, M.S. Dimitrijević, N. Moreau, STARK-B database. Observatory of Paris / LERMA and Astronomical Observatory of Belgrade. Retrieved from http://starkb.obspm.fr (2020)

Download references

Acknowledgements

This research project was supported by a grant from the “Research Center of the Female Scientific and Medical Colleges,” Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the preparation of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Milan S. Dimitrijević.

Additional information

Advances in Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: from Biomolecules to Space Particles-SPIG 2020-edited by Duško Borka, Dragana Ilić, Aleksandar Milosavljevic, Christophe Nicolas, Vladimir Srećković, Luka Ć. Popović, Sylwia Ptasinska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almodlej, A., Alwadie, N., Ben Nessib, N. et al. On the applications of the modified semiempirical method for Stark broadening: the example of the alkali-like ion Sr II. Eur. Phys. J. D 75, 84 (2021). https://doi.org/10.1140/epjd/s10053-021-00091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00091-x

Navigation