Skip to main content
Log in

Study of non-relativistic energy and fine structure splitting using a Rayleigh–Ritz method for a high-angular-momentum state

  • Original Paper - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Based on the Rayleigh–Ritz variation method, the non-relativistic energies of highly excited 1s2nl (l = g, h) states of a lithium-like isoelectronic sequence have been studied. We also investigated the fine structure splitting of the 1s2nl (l = g, h) states, which includes spin–orbital effects, spin–other orbital effects, quantum electrodynamics (QED) corrections and higher order relativistic corrections. The fine structure splitting values of the 1s25g state are compared with those in the existing literature. At present, no relevant data on 1s2nl (l = g, h) (n ≥ 6) have been found. Consequently, the calculation results in this paper should provide a valuable reference. We also obtained the regularities of the fine structure splitting with the nuclear charge number Z and the main quantum number n and found a physical law that the fine structures of the 1s2nl (l =  g, h) states is proportional to the fourth power of the effective nuclear charge Zeff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.V. Malyshev, I.S. Anisimova et al., Phys. Rev. A 100, 012510 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. V.M. Shabaev, D.A. Glazov et al., Phys. Rev. A 98, 032512 (2018)

    Article  ADS  Google Scholar 

  3. V.A. Yerokhin, A. Surzhykov et al., Phys. Rev. A 96, 042505 (2017)

    Article  ADS  Google Scholar 

  4. V.A. Yerokhin, E. Berseneva et al., Phys. Rev. Lett. 116, 100801 (2016)

    Article  ADS  Google Scholar 

  5. L. Natarajan, Phys. Rev. A 92, 012507 (2015)

  6. B.L. Deng, G. Jiang et al., At. Data Nucl. Data Tables 100, 1337–1355 (2014)

    Article  ADS  Google Scholar 

  7. I. Sakho, Chin. J. Phys. 52(5), 1471–1497 (2014)

    Google Scholar 

  8. Z.C. Yan, G.W.F. Drake, Phys. Rev. A 66, 042504 (2002)

    Article  ADS  Google Scholar 

  9. G.Y. Liang, N.R. Badnell, Astron. Astrophys. 528, 703–712 (2011)

    Article  Google Scholar 

  10. J. Sapirstein, K.T. Cheng, Phys. Rev. A 83, 012504 (2011)

    Article  ADS  Google Scholar 

  11. L. Natarajan, Phys. Scr. 94, 115807 (2019)

    Article  ADS  Google Scholar 

  12. C. Chen, B.C. Gou, Commun. Theor. Phys. 70, 765–770 (2018)

    Article  Google Scholar 

  13. Y. Sun, D.D. Liu et al., J. Quant. Spectrosc. Ra. 167, 145–155 (2015)

    Article  ADS  Google Scholar 

  14. C.M. Zhang, C. Chen et al., Eur. Phys. J. D 69, 105 (2015)

    Article  ADS  Google Scholar 

  15. C.M. Zhang, Y. Sun et al., Can. J. Phys. 94, 448–457 (2016)

    Article  ADS  Google Scholar 

  16. M.H. Hu, Z.W. Wang et al., Chin. Phys. B 20, 083101 (2011)

    Article  ADS  Google Scholar 

  17. Z.W. Wang, Y. Guo, Front. Phys. 7, 252–255 (2012)

    Article  ADS  Google Scholar 

  18. J. Cai, W.W. Yu et al., Chin. Phys. Lett. 31, 093101 (2014)

    Article  ADS  Google Scholar 

  19. Z.M. Ge, Z.W. Wang et al., Acta Phys. Sin. 53(1), 42–47 (2004). (Chin.)

    Article  Google Scholar 

  20. Z.W. Wang, Y. Liu et al., Chin. Phys. B 17, 2909–2913 (2008)

    Article  ADS  Google Scholar 

  21. K.T. Chung, Phys. Rev. A 44, 5421 (1991)

    Article  ADS  Google Scholar 

  22. K.T. Chung, Phys. Rev. A 45, 7766 (1992)

    Article  ADS  Google Scholar 

  23. X. Liu, J.C. Zhang et al., Results Phys. 12, 398–402 (2019)

    Article  ADS  Google Scholar 

  24. X. Liu, J.C. Zhang et al., J. Korean Phys. Soc. 76(1), 14–18 (2020)

    Article  ADS  Google Scholar 

  25. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, Berlin, 1977)

    Book  Google Scholar 

  26. Z.W. Wang, X.W. Zhu et al., J. Phys. B 25, 3515–3927 (1992)

    Google Scholar 

  27. J.Y. Li, D.J. Ding et al., Phys. Rev. A 88, 042511 (2013)

    Article  ADS  Google Scholar 

  28. L.M. Wang, C. Li et al., Phys. Rev. A 95, 032504 (2017)

    Article  ADS  Google Scholar 

  29. K.M. Aggarwal, F.P. Keenan, At. Data Nucl. Data Tables 98, 1003 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number: 21603185) and Research Fund for the Doctoral Program of Hebei Normal University of Science & Technology (Grant number: 2021YB010).The authors are grateful to K. T. Chung for providing the computational procedure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Liu or Jingchao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, J. Study of non-relativistic energy and fine structure splitting using a Rayleigh–Ritz method for a high-angular-momentum state. J. Korean Phys. Soc. 80, 197–202 (2022). https://doi.org/10.1007/s40042-021-00349-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00349-y

Keywords

Navigation