Skip to main content
Log in

Evolution of the Graphene Layer in Hybrid Graphene/Silicon Carbide Heterostructures upon Heating

  • Regular Article - Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The hybrid graphene/SiC model is studied via molecular dynamics simulation to observe the evolution of the graphene layer upon heating. A two-layer model containing 10,000 graphene atoms and 7000 SiC atoms is heated from 50 K to 6000 K via Tersoff and Lennard-Jones potentials. The melting point zone is defined as the temperature range from 4400 K to 4600 K, which is close to the melting zone of graphite in an experiment. The Lindemann criterion for the 2D case is calculated and used to observe the appearance of liquid-like atoms. The evolution upon heating is analyzed on the basis of the occurrence/growth of liquid-like atoms, the radial distribution functions, and the formation of clusters. The liquid-like atoms tend to form clusters, and the largest cluster increases in size slightly to form a single largest cluster of liquid-like atoms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. nature 438, 197 (2005)

  2. Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y.-W. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, P. Kim, Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Let. 96, 136806 (2006)

    Article  ADS  Google Scholar 

  3. Y. Wu, D.B. Farmer, W. Zhu, S.-J. Han, C.D. Dimitrakopoulos, A.A. Bol, P. Avouris, Y.-M. Lin, Three-terminal graphene negative differential resistance devices. ACS Nano 6, 2610 (2012)

    Article  Google Scholar 

  4. K.M. Habib, F. Zahid, R.K. Lake, Negative differential resistance in bilayer graphene nanoribbons. Appl. Phys. Lett. 98, 192112 (2011)

    Article  ADS  Google Scholar 

  5. G. Fiori, Negative differential resistance in mono and bilayer graphene pn junctions. IEEE Electron. Device Lett. 32, 1334 (2011)

    Article  ADS  Google Scholar 

  6. L. Britnell, R. Gorbachev, R. Jalil, B. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. Katsnelson, L. Eaves, S. Morozov, Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012)

    Article  ADS  Google Scholar 

  7. J. Kim, M.S. Lee, S. Jeon, M. Kim, S. Kim, K. Kim, F. Bien, S.Y. Hong, J.U. Park, Highly Transparent and Stretchable Field-Effect Transistor Sensors Using Graphene-Nanowire Hybrid Nanostructures. Adv. Mater. 27, 3292 (2015)

    Article  Google Scholar 

  8. C. Gong, H. Zhang, W. Wang, L. Colombo, R.M. Wallace, K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett. 103, 053513 (2013)

    Article  ADS  Google Scholar 

  9. H. Ilatikhameneh, Y. Tan, B. Novakovic, G. Klimeck, R. Rahman, J. Appenzeller, Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE J. Explor. Solid-State Comput. De. Circuits 1, 12 (2015)

    Article  ADS  Google Scholar 

  10. F. Romeo, A. Di Bartolomeo, Scattering Theory of Graphene Grain Boundaries. Materials 11, 1660 (2018)

    Article  ADS  Google Scholar 

  11. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: an emerging electronic material. Adv. Mater. 24, 5782 (2012)

    Article  Google Scholar 

  12. F. Mazzamuto, V.H. Nguyen, Y. Apertet, C. Caër, C. Chassat, J. Saint-Martin, P. Dollfus, Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011)

    Article  ADS  Google Scholar 

  13. H. Karamitaheri, N. Neophytou, M. Pourfath, R. Faez, H. Kosina, Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons. J. Appl. Phys. 111, 054501 (2012)

    Article  ADS  Google Scholar 

  14. K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, A. Rubio, Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons. Phys. Rev. B 86, 045425 (2012)

    Article  ADS  Google Scholar 

  15. J. Oh, H. Yoo, J. Choi, J.Y. Kim, D.S. Lee, M.J. Kim, J.-C. Lee, W.N. Kim, J.C. Grossman, J.H. Park, Significantly reduced thermal conductivity and enhanced thermoelectric properties of single-and bi-layer graphene nanomeshes with sub-10 nm neck-width. Nano Energy 35, 26 (2017)

    Article  Google Scholar 

  16. V.-T. Tran, J. Saint-Martin, P. Dollfus, S. Volz, High thermoelectric performance of graphite nanofibers. Nanoscale 10, 3784 (2018)

    Article  Google Scholar 

  17. J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomaterialia 9, 9243 (2013)

    Article  Google Scholar 

  18. X. Dong, Y. Shi, W. Huang, P. Chen, L.J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649 (2010)

    Article  Google Scholar 

  19. N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469 (2008)

    Article  ADS  Google Scholar 

  20. S. Jo, Y.H. Park, S.-G. Ha, S.M. Kim, C. Song, S.Y. Park, I. In, Simple noncovalent hybridization of polyaniline with graphene and its application for pseudocapacitor. Synthetic Metals 209, 60 (2015)

    Article  Google Scholar 

  21. V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464 (2016)

    Article  Google Scholar 

  22. J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  23. J. Tersoff, Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 41, 3248 (1990)

    Article  ADS  Google Scholar 

  24. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  25. N. Yu, A.A. Polycarpou, Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential. J. Colloid Interface Sci. 278, 428 (2004)

    Article  ADS  Google Scholar 

  26. J..W. Kang, H..J. Hwang, Comparison of C60 encapsulations into carbon and boron nitride nanotubes. J. Phys.: Condens. Mat 16, 3901 (2004)

    ADS  Google Scholar 

  27. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  28. V.V. Hoang, L.T.C. Tuyen, T.Q. Dong, Stages of melting of graphene model in two-dimensional space. Philos. Mag. 96, 1993 (2016)

    Article  ADS  Google Scholar 

  29. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graphics 14, 33 (1996)

    Article  Google Scholar 

  30. P. Bak, Commensurate phases, incommensurate phases and the devil’s staircase. Reports Prog. Phys. 45, 587 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon 43, 1115 (2005)

    Article  Google Scholar 

  32. N.T.T. Hang, Dependence of melting process on size and edge type of Graphene Nanoribbon. Commun. Phys. 26, 381 (2016)

    Article  Google Scholar 

  33. H.T. Nguyen, Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating. Carbon Lett. 29, 521 (2019)

    Article  Google Scholar 

  34. N.H. March, M.P. Tosi, Introduction to Liquid State Physics (World Scientific, Singapore, 2002).

    Book  Google Scholar 

  35. N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Let. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  36. N.D. Mermin, Crystalline order in two dimensions. Phys. Rev. 176, 250 (1968)

    Article  ADS  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics (Elsevier, Amsterdam, 2013).

    Google Scholar 

  38. V. Bedanov, G. Gadiyak, Y.E. Lozovik, On a modified Lindemann-like criterion for 2D melting. Phys. Lett. A 109, 289 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Ho Chi Minh City University of Technology - VNU-HCM under grant number T-KHUD-2020-09.

Author information

Authors and Affiliations

Authors

Contributions

Hang T. T. Nguyen contributed to conceptualization, methodology, software, validation, formal analysis, investigation, writing—review & editing, and visualization. Duong Thi Nhu Tranh helped with validation and formal analysis.

Corresponding author

Correspondence to Hang T. T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T.T., Tranh, D.T.N. Evolution of the Graphene Layer in Hybrid Graphene/Silicon Carbide Heterostructures upon Heating. Eur. Phys. J. D 75, 105 (2021). https://doi.org/10.1140/epjd/s10053-021-00062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00062-2

Navigation