Skip to main content
Log in

Quantum Fisher information affected by fluctuating vacuum electromagnetic field with a boundary

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the behaviors of quantum Fisher information (QFI) for an accelerated atom interacted with fluctuating electromagnetic vacuum near a perfectly reflecting boundary. The master equation that governs the atom evolution is firstly derived. In the case without boundary, the fluctuation and acceleration of electromagnetic vacuum always attenuate the QFI. Nevertheless, in the presence of a boundary, the degradation, oscillation, and maintaining of QFI are dependent on the atom-boundary distance, acceleration and polarization direction of atom. The boundary can efficiently shield QFI from the impact of the fluctuating electromagnetic vacuum and acceleration in some certain conditions and let us have more freedom of manipulating the precision of parameter estimation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)

  2. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982)

  3. P.C. Humphreys, M. Barbieri, A. Datta, I.A. Walmsley, Phys. Rev. Lett. 111, 070403 (2013)

    Article  ADS  Google Scholar 

  4. L. Pezzè, M.A. Ciampini, N. Spagnolo, P.C. Humphreys, A. Datta, I.A. Walmsley, M. Barbieri, F. Sciarrino, A. Smerzi, Phys. Rev. Lett. 119, 130504 (2017)

    Article  ADS  Google Scholar 

  5. X.M. Lu, X. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  6. P. Hauke, M. Heyl, L. Tagliacozzo, P. Zoller, Nat. Phys. 12, 778 (2016)

    Article  Google Scholar 

  7. D. Girolami, Information geometry of quantum resources, in Information geometry and its applications IV (Springer, Cham, 2016), pp. 399–410

  8. Z. Sun, J. Ma, X.M. Lu, X. Wang, Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  9. G. Salvatori, A. Mandarino, M.G.A. Paris, Phys. Rev. A 90, 022111 (2014)

    Article  ADS  Google Scholar 

  10. Y. Yao, L. Ge, X. Xiao, X.G. Wang, C.P. Sun, Phys. Rev. A 90, 022327 (2014)

    Article  ADS  Google Scholar 

  11. H. Song, S. Luo, N. Li, L. Chang, Phys. Rev. A 88, 042121 (2013)

    Article  ADS  Google Scholar 

  12. K. Berrada, S. Abdel-Khalek, A.S. Obada, Phys. Lett. A 376, 1412 (2012)

    Article  ADS  Google Scholar 

  13. W. Zhong, Z. Sun, J. Ma, X.G. Wang, F. Nori, Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  14. K. Berrada, Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  15. Y. Jin, H.W. Yu, Phys. Rev. A 91, 022120 (2015)

    Article  ADS  Google Scholar 

  16. Z.M. Huang, Eur. Phys. J. Plus 133, 101 (2018)

    Article  Google Scholar 

  17. Z.M. Huang, Z.H. Tian, Nucl. Phys. B 923, 458 (2017)

    Article  ADS  Google Scholar 

  18. Z.M. Huang, D.W. Qiu, Quantum Inf. Process. 15, 1979 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Z.M. Huang, D.W. Qiu, P. Mateus, Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Z.M. Huang, H.Z. Situ, Ann. Phys. 377, 484 (2017)

    Article  ADS  Google Scholar 

  21. Z.M. Huang, Quantum Inf. Process. 18, 187 (2019)

    Article  ADS  Google Scholar 

  22. Z.M. Huang, H.Z. Situ, Quantum Inf. Process. 17, 95 (2018)

    Article  ADS  Google Scholar 

  23. Z.M. Huang, Nucl. Phys. B 950, 114832 (2020)

    Article  Google Scholar 

  24. J.L. Zhang, H.W. Yu, Phys. Rev. A 75, 012101 (2007)

    Article  ADS  Google Scholar 

  25. H. Yu, J. Hu, Phys. Rev. A 86, 064103 (2012)

    Article  ADS  Google Scholar 

  26. Z.M. Huang, Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  Google Scholar 

  27. Z.M. Huang, Quantum Inf. Process. 18, 149 (2019)

    Article  ADS  Google Scholar 

  28. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  29. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  30. D. Šafránek, Phys. Rev. A 97, 042322 (2018)

    Article  ADS  Google Scholar 

  31. V. Gorini, A. Kossakowski, E.C.G. Surdarshan, J. Math. Phys. 17, 821 (1976)

    Article  ADS  Google Scholar 

  32. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  Google Scholar 

  33. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  34. F.W. Cummings, Am. J. Phys. 30, 898 (1962)

    Article  ADS  Google Scholar 

  35. F.W. Cummings, Nuovo Cim. B 70, 102 (1982)

    Article  ADS  Google Scholar 

  36. N.D. Birrell, P.C.W. Davies, Quantum Fields Theory in Curved Space (Cambridge University Press, Cambridge, England, 1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin He.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., He, Z. Quantum Fisher information affected by fluctuating vacuum electromagnetic field with a boundary. Eur. Phys. J. D 74, 127 (2020). https://doi.org/10.1140/epjd/e2020-10149-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10149-9

Keywords

Navigation