Skip to main content
Log in

Behaviors of quantum correlation for atoms coupled with fluctuating electromagnetic field with a perfectly reflecting boundary

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the behaviors of quantum correlation for two atoms interacted with fluctuating electromagnetic field near a perfectly reflecting boundary. We firstly derive the master equation that governs the system evolution. Then, we discuss the generation, revival and degradation of quantum correlation, which are closely related to boundary effect and atomic polarization direction. Compared with the entanglement behaviors, it is shown that quantum correlation presents better robustness than entanglement, which may be helpful to quantum information processing. Furthermore, the presence of boundary offers us a means for preserving quantum correlation under decoherence and gives us more freedom to adjust the behaviors of quantum correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  2. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  4. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  5. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)

    Article  ADS  Google Scholar 

  8. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  9. Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  11. Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  12. Qiu, L., Liu, Z.: Hierarchy, factorization law of two measurement-induced nonlocalities and their performances in quantum phase transition. Quantum Inf. Process. 15, 2053 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  14. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  15. Chuan, T.K., et al.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)

    Article  ADS  Google Scholar 

  16. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  19. Lamb Jr., W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947)

    Article  ADS  Google Scholar 

  20. Zhang, J.L., Yu, H.W.: Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary. Phys. Rev. A 75, 012101 (2007)

    Article  ADS  Google Scholar 

  21. Zhang, J.L., Yu, H.W.: Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary. Phys. Rev. D. 75, 104014 (2007)

    Article  ADS  Google Scholar 

  22. Yu, H., Hu, J.: Detecting modified vacuum fluctuations due to the presence of a boundary by means of the geometric phase. Phys. Rev. A 86, 064103 (2012)

    Article  ADS  Google Scholar 

  23. Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Cheng, S.J., Yu, H.W., Hu, J.W.: Entanglement dynamics for uniformly accelerated two-level atoms in the presence of a reflecting boundary. Phys. Rev. D 98, 025001 (2018)

    Article  ADS  Google Scholar 

  25. Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B Quantum Semiclass. Opt. 7, S429 (2005)

    Article  ADS  Google Scholar 

  26. Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  29. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  30. Birrell, N.D., Davies, P.C.W.: Quantum Fields Theory in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180) and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010). Guangdong philosophy and social science planning project (GD15XGL55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Behaviors of quantum correlation for atoms coupled with fluctuating electromagnetic field with a perfectly reflecting boundary. Quantum Inf Process 18, 149 (2019). https://doi.org/10.1007/s11128-019-2268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2268-8

Keywords

Navigation