Skip to main content
Log in

Electromagnetic momenta for wave-particle systems in vacuum waveguides

Universality of the Abraham-Minkowski dilemma beyond dielectric materials

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Whenever light is slowed down, for any cause, two different formulas give its momentum. The coexistence of those momenta was the heart of the century-old Abraham-Minkowski dilemma, recently resolved for dielectrics. We demonstrate that this framework extends to momentum exchange in wave-particle interaction; in particular to vacuum waveguides of electron tubes (dispersive metallic slow-wave structures). In waveguides, the dilemma can be easily investigated since energy and force are well established through the use of Maxwell equations in vacuum, and since waveguides can have a strong refractive index. Our theory is assessed with simulations validated against measurements from a traveling-wave tube. In addition, we show that the dilemma resolution is not limited to discriminating between kinematic and canonical momenta but also involves a non-negligible flowing momentum from Maxwell’s electromagnetic stress. The existence of two momenta for diverse systems like materials, plasmas and waveguides, for which light velocity modification has entirely different origin, points to the universality of the Abraham-Minkowski dilemma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Leonhardt, Nature 444, 823 (2006)

    ADS  Google Scholar 

  2. A. Cho, Science 327, 1067 (2010)

    Google Scholar 

  3. K.T. McDonald, Bibliography on the Abraham-Minkowski debate (update of Sept. 29, 2017) http://physics.princeton.edu/ mcdonald/examples/ambib.pdf

  4. H. Minkowski, Nachr. Ges. Wiss.Göttingen, Math. Phys. Kl. 2, 53 (1908)

    Google Scholar 

  5. H. Minkowski, Math. Ann. 68, 472 (1910)

    MathSciNet  Google Scholar 

  6. M. Abraham, Rend. Circ. Mat. Palermo 28, 1 (1909)

    Google Scholar 

  7. M. Abraham, Rend. Circ. Mat. Palermo 30, 33 (1910)

    Google Scholar 

  8. R.V. Jones, J.C.S. Richards, Proc. R. Soc. Lond. A. 221, 480 (1954)

    ADS  Google Scholar 

  9. R.V. Jones, Proc. R. Soc. Lond. A. 360, 365 (1978)

    ADS  Google Scholar 

  10. I. Brevik, Phys. Rep. 52, 133 (1979)

    ADS  Google Scholar 

  11. R.N.C. Pfeifer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Rev. Mod. Phys. 79, 1197 (2007)

    ADS  Google Scholar 

  12. E.A. Hinds, S.M. Barnett, Phys. Rev. Lett. 102, 050403 (2009)

    ADS  Google Scholar 

  13. S.M. Barnett, Phys. Rev. Lett. 104, 070401 (2010)

    ADS  Google Scholar 

  14. S.M. Barnett, R. Loudon, Philos. Trans. R. Soc. Lond. A 368, 927 (2010)

    ADS  Google Scholar 

  15. P.W. Milonni, R.W. Boyd, Adv. Opt. Photonics 2, 519 (2010)

    ADS  Google Scholar 

  16. B.A. Kemp, J. Appl. Phys. 109, 111101 (2011)

    ADS  Google Scholar 

  17. J.C. Garrison, R.Y. Chiao, Phys. Rev. A 70, 053826 (2004)

    ADS  Google Scholar 

  18. T.G. Philbin, Phys. Rev. A 83, 013823 (2011) [Erratum: Phys. Rev. A 85, 059902 (2012)]

    ADS  Google Scholar 

  19. I.Y. Dodin, N.J. Fisch, Phys. Rev. A 86, 053834 (2012)

    ADS  Google Scholar 

  20. D.J. Griffiths, Am. J. Phys. 60, 7 (2012)

    ADS  Google Scholar 

  21. M.G. Silveirinha, Phys. Rev. A 96, 033831 (2017)

    ADS  MathSciNet  Google Scholar 

  22. I. Brevik, Phys. Rev. A 98, 043847 (2018)

    ADS  Google Scholar 

  23. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Phys. Rev. Lett. 119, 073901 (2017)

    ADS  Google Scholar 

  24. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, New J. Phys. 19, 123014 (2017)

    ADS  Google Scholar 

  25. M.F. Picardi, K.Y. Bliokh, F.J. Rodriguez-Fortuño, F. Alpeggiani, F. Nori, Optica 5, 1016 (2018)

    ADS  Google Scholar 

  26. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

  27. M. Kline, I.W. Kay, Electromagnetic theory and geometric optics (Wiley, New York, 1965)

  28. H. Römer, Theoretical optics – An introduction (Wiley-VCH, Weinheim, 2005)

  29. J.T. Mendonça, Theory of photon acceleration (IoP publishing, Bristol, 2001)

  30. Y. Elskens, D.F. Escande, Microscopic dynamics of plasmas and chaos (IoP publishing, Bristol, 2003)

  31. D.F. Escande, D. Bénisti, Y. Elskens, D. Zarzoso, F. Doveil, Rev. Mod. Plasma Phys. 2, 9 (2018)

    ADS  Google Scholar 

  32. D.F.G. Minenna, Y. Elskens, F. André, F. Doveil, Europhys. Lett. 122, 44002 (2018)

    ADS  Google Scholar 

  33. D.A. Watkins, Topics in electromagnetic theory (Wiley, New York, 1958)

  34. A.S. Gilmour Jr., Principles of traveling wave tubes (Artech House radar library, Boston, 1994)

  35. D.F.G. Minenna, F. André, Y. Elskens, J.-F. Auboin, F. Doveil, J. Puech, É. Duverdier, Eur. Phys. J. H 44, 1 (2019)

    Google Scholar 

  36. S.P. Kuznetsov, Sov. J. Commun. Technol. Electron. 25, 419 (1980)

    Google Scholar 

  37. F. André, P. Bernardi, N.M. Ryskin, F. Doveil, Y. Elskens, Europhys. Lett. 103, 28004 (2013)

    ADS  Google Scholar 

  38. D.F.G. Minenna, A.G. Terentyuk, Y. Elskens, F. André, N.M. Ryskin, Phys. Scr. 94, 055601 (2019)

    ADS  Google Scholar 

  39. D.F.G. Minenna, PhD thesis, Aix-Marseille University, Marseille, 2019

  40. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn (Pergamon Press, Oxford, 1984)

  41. D.J. Griffiths, Introduction to electrodynamics, 3rd edn. (Prentice Hall, New Jersey, 1999)

  42. D.F.G. Minenna, Y. Elskens, F. André, Proceedings of the 18th IEEE International Vacuum Electronics Conference (IVEC), London (IEEE, Piscataway NJ, 2017)

  43. D.F.G. Minenna, Y. Elskens, F. André, J. Puech, A. Poyé, F. Doveil, T. Pereira, Proceedings of the 20th IEEE International Vacuum Electronics Conference (IVEC), Busan (IEEE, Piscataway NJ, 2019)

  44. D.F.G. Minenna, Y. Elskens, F. André, A. Poyé, J. Puech, F. Doveil, IEEE Trans. Electron Devices 66, 4042 (2019)

    ADS  Google Scholar 

  45. L. Landau, J. Phys. USSR 10, 25 (1946)

    Google Scholar 

  46. C. Mouhot, C. Villani, Acta Math. 207, 29 (2011)

    MathSciNet  Google Scholar 

  47. G. Dimonte, J.H. Malmberg, Phys. Rev. Lett. 38, 401 (1977)

    ADS  Google Scholar 

  48. S.I. Tsunoda, F. Doveil, J.H. Malmberg, Phys. Fluids B 3, 2747 (1991)

    ADS  Google Scholar 

  49. F. Doveil, A. Macor, Kh Auhmani, Plasma Phys. Control. Fusion 47, A261 (2005)

    ADS  Google Scholar 

  50. F. Doveil, D.F. Escande, A. Macor, Phys. Rev. Lett. 94, 085003 (2005)

    ADS  Google Scholar 

  51. H.E. Mynick, A.N. Kaufman, Phys. Fluids 21, 653 (1978)

    ADS  Google Scholar 

  52. R. Klma, V.A. Petržlka, Czech, J. Phys. B 22, 896 (1972)

    Google Scholar 

  53. R. Klma, V.A. Petržlka, J. Phys. A: Math. Gen. 11, 1687 (1978)

    ADS  Google Scholar 

  54. R.L. Dewar, Austral. J. Phys. 30, 533 (1977)

    ADS  MathSciNet  Google Scholar 

  55. R. Klma, V.A. Petržlka, Ann. Phys. 92, 395 (1975)

    ADS  Google Scholar 

  56. U. Leonhardt, Phys. Rev. A 90, 033801 (2014)

    ADS  Google Scholar 

  57. C. Iltis, Isis 62, 21 (1971)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien F. G. Minenna.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minenna, D.F.G., Elskens, Y., Doveil, F. et al. Electromagnetic momenta for wave-particle systems in vacuum waveguides. Eur. Phys. J. D 74, 103 (2020). https://doi.org/10.1140/epjd/e2020-100640-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100640-6

Keywords

Navigation