Skip to main content
Log in

Electron impact ionization and fragmentation of biofuels

  • Topical Review
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present in this article, a review of our recent experimental and theoretical studies published in the literature on electron impact ionization and fragmentation of the primary alcohols methanol, ethanol, 1-propanol and 1-butanol (C1–C4). We discuss the mass spectra (MS) of these alcohols, measured for the electron impact energy of 70 eV and also, total (TICS) and partial (PICS) ionization cross sections in the energy range from 10 to 100 eV, which revealed the probability of forming different cations, by either direct or dissociative ionization. These experimental TICS are summarized together with theoretical values, calculated using the Binary-encounter Bethe (BEB) and the independent atom model with the screening corrected additivity rule (IAM-SCAR) methods. Additionally, we compared data of appearance energies – AE and discussed the application of the extended Wannier theory to PICS in order to produce the ionization and ionic fragmentation thresholds for the electron impact of these alcohols.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Nixon, W.A.D. Pires, R.F.C. Neves, H.V. Duque, D.B. Jones, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 404 (2016) 48.

    Google Scholar 

  2. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.F.C. Neves, H.V. Duque, R.A.A. Amorim, D.B. Jones, F. Blanco, G. Garcia, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 422 (2017) 32.

    Google Scholar 

  3. W.A.D. Pires, K.L. Nixon, S. Ghosh, R.A.A. Amorim, R.F.C. Neves, H.V. Duque, D.G.M. da Silva, D.B. Jones, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 430 (2018) 158.

    Google Scholar 

  4. S. Ghosh, K.L. Nixon, W.A.D. Pires, R.A.A. Amorim, R.F.C. Neves, H.V. Duque, D.G.M. da Silva, D.B. Jones, F. Blanco, G. Garcia, M.J. Brunger, M.C.A. Lopes, Int. J. Mass Spectrom. 430 (2018) 44.

    Google Scholar 

  5. S. Payne, T. Dutzik, E. Figdor, Environment America Research and Policy Center. http://www.environmentamerica.org/sites/environment/files/reports/The-High-Cost-of-Fossil-Fuels (2009).

  6. B. Pieprzyk, N. Kortlüke, P.R. Hilje, Energy Research Architecture Report – European Biodiesel Board 225, 2009

  7. World Health Organization, How Air Pollution is Destroying our Health. https://wwww.hoint/air-pollution/news-and-events/how-air-pollution-is-destroying-our-health (2019).

  8. P. Sabuco, BNP Paribas Specialized Trade Solutions, The future of alternative fuel-powered cars. https://focusmagazine.bnpparibas (2019).

  9. M.A. Ridenti, J.A. Filho, M.J. Brunger, R.F. Da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 70, 161 (2016).

    ADS  Google Scholar 

  10. M.J. Brunger, Int. Rev. Phys. Chem. 36, 333 (2017).

    Google Scholar 

  11. Biofuels the Fuel of the Future, http://biofuel.org.uk/ for information on types of biofuels, advantages and disadvantages when compared to fossil fuels

  12. B. Ndaba, I. Chiyanzu, S. Marx, Biotechnol. Rep. 8, 1 (2015).

    Google Scholar 

  13. Technology Collaboration Programme on Advanced Motor Fuels, http://www.iea-amf.org/content/fuel_information/butanol/properties#octane_numbers, for information on advanced motor fuels.

  14. W. Han, C. Yao, Fuel 150, 29 (2015).

    Google Scholar 

  15. P. Oßwald, H. Güldenberg, K. Kohse-Höinghaus, B. Yang, T. Yuan, F. Qi, Combust. Flame 158, 2 (2011).

    Google Scholar 

  16. M.A. Khakoo, J. Muse, H. Silva, M.C.A. Lopes, C. Winstead, V. McKoy, E.M. de Oliveira, R.F. Da Costa, M.T. do N. Varella, M.H.F. Bettega, M.A.P. Lima, Phys. Rev. A 78 (2008) 062714.

    ADS  Google Scholar 

  17. A.P. Mariano, N. Qureshi, R. Maciel Filho, T.C. Ezeji, Biotechnol. Bioeng. 108, 1757 (2011).

    Google Scholar 

  18. H. Tanaka, M.J. Brunger, L. Campbell, H. Kato, M. Hoshino, A.R.P. Rau, Rev. Mod. Phys. 88, 025004 (2016).

    ADS  Google Scholar 

  19. F. Schmieder, Z. Elektrochem, Angew. Phys. Chem. 36, 700 (1930).

    Google Scholar 

  20. R. Rejoub, C.D. Morton, B.G. Lindsay, R.F. Stebbings, J. Chem. Phys. 118, 1756 (2003).

    ADS  Google Scholar 

  21. O. Sueoka, Y. Katayama, S. Mori, At. Coll. Res. Japan Prog. Rep. 11, 17 (1985).

    Google Scholar 

  22. C. Szmytkowski, A.M. Krzysztofowicz, J. Phys. B: At. Mol. Opt. Phys. 28, 4291 (1995).

    ADS  Google Scholar 

  23. M. Vinodkumar, C. Limbachiya, K.N. Joshipura, B. Vaishnav, S. Gangopadhyay, J. Phys. Conf. Ser. 115, 012013 (2008).

    Google Scholar 

  24. D.G.M. Silva, T. Tejo, J. Muse, D. Romero, M.A. Khakoo, M.C.A. Lopes, J. Phys. B: At. Mol. Opt. Phys. 43, 015201 (2010).

    ADS  Google Scholar 

  25. X.M. Tan, D.H. Wang, Nucl. Instrum. Methods Phys. Res. B 269, 1094 (2011).

    ADS  Google Scholar 

  26. M.T. Lee, G.L.C. de Souza, L.E. Machado, L.M. Brescansin, A.S. dos Santos, R.R. Lucchese, R.T. Sugohara, M.G.P. Homem, I.P. Sanches, I. Iga, J. Chem. Phys. 136, 114311 (2012).

    ADS  Google Scholar 

  27. M. Vinodkumar, C. Limbachiya, A. Barot, N. Mason, Phys. Rev. A 87, 012702 (2013).

    ADS  Google Scholar 

  28. D.G.M. da Silva, M. Gomes, S. Ghosh, I.F.L. Silva, W.A.D. Pires, D.B. Jones, F. Blanco, G. Garcia, S.J. Buckman, M.J. Brunger, M.C.A. Lopes, J. Chem. Phys. 147, 194307 (2017).

    ADS  Google Scholar 

  29. M. Gomes, D.G.M. da Silva, A.C.P. Fernandes, S. Ghosh, W.A.D. Pires, D.B. Jones, G. Garca, M.J. Brunger, M.C.A. Lopes, J. Chem. Phys. 150, 194307 (2019).

    ADS  Google Scholar 

  30. D. Bouchiha, J.D. Gorfinkiel, L.G. Caron, L. Sanche, J. Phys. B: At. Mol. Opt. Phys. 40, 1259 (2007).

    ADS  Google Scholar 

  31. M.A. Khakoo, J. Blumer, K. Keane, C. Campbell, H. Silva, M.C.A. Lopes, C. Winstead, V. McKoy, R.F. da Costa, L.G. Ferrira, M.A.P. Lima, M.H.F. Bettega, Phys. Rev. A 77, 042705 (2008).

    ADS  Google Scholar 

  32. R.T. Sugohara, M.G.P. Homem, I.P. Sanches, A.F. de Moura, M.T. Lee, I. Iga, Phys. Rev. A 83, 032708 (2011).

    ADS  Google Scholar 

  33. N. Duric, I. Cadez, M.V. Kurepa, Fizika 21, 339 (1989).

    Google Scholar 

  34. S.K. Srivastava, E. Krishnakumar, A.F. Fucaloro, T. van Note, J. Geophys. Res. 101, 26155 (1996).

    ADS  Google Scholar 

  35. H. Deutsch, K. Becker, R. Basner, M. Schmidt, T.D. Märk, J. Phys. Chem. A 102, 8819 (1998).

    Google Scholar 

  36. J.E. Hudson, M.L. Hamilton, C. Vallance, P.W. Harland, Phys. Chem. Chem. Phys. 5, 3162 (2003).

    Google Scholar 

  37. S. Pal, Chem. Phys. 302, 119 (2004).

    Google Scholar 

  38. M. Vinodkumar, K. Korot, P.C. Vinodkumar, Int. J. Mass. Spectrom. 305, 26 (2011).

    Google Scholar 

  39. J.N. Bull, P.W. Harland, C. Vallance, J. Phys. Chem. A 116, 767 (2012).

    Google Scholar 

  40. N. Uddin, P. Verma, M.J. Alam, S. Ahmad, B. Antony, Int. J. Mass. Spectrom. 432, 37 (2018).

    Google Scholar 

  41. A.N. Zavilopulo, F.F. Chipev, L.M. Kokhtych, Nucl. Instrum. Methods Phys. Res. B 233, 302 (2005).

    ADS  Google Scholar 

  42. K.M. Douglas, S.D. Price, J. Chem. Phys. 131, 224305 (2009).

    ADS  Google Scholar 

  43. C.S. Cummings, W. Bleakney, Phys. Rev. 58, 787 (1940).

    ADS  Google Scholar 

  44. J.M. Williams, W.H. Hamill, J. Chem. Phys. 49, 4467 (1968).

    ADS  Google Scholar 

  45. E. Szot, L. Wójcik, K. Gauch, Vacuum 90, 141 (2013).

    ADS  Google Scholar 

  46. E. Szot, K. Gauch, L. Wójcik, Acta Phys. Pol. A 123, 797 (2013).

    Google Scholar 

  47. A. Maccoll, Org. Mass Spectrom 21, 601 (1986).

    Google Scholar 

  48. R.A. Friedel, L. Shultz, A.G. Sharkey Jr, Anal. Chem. 8, 45 (1956).

    Google Scholar 

  49. S. Beck, A. Michalski, O. Raether, M. Lubeck, S. Kaspar, N. Goedecke, C. Baessmann, D. Hornburg, F. Meier, I. Paron, N.A. Kulak, J. Cox, M. Mann, Molecular & Cellular Proteomics 14, 2014 (2015).

    Google Scholar 

  50. Hidden Analytical, http://www.hidenanalytical.com.en/ for a description of the mass spectrometer

  51. F. Blanco, G. Garcia, J. Phys. B: At. Mol. Opt. Phys. 42, 145203 (2009).

    ADS  Google Scholar 

  52. O. Zatsarinny, K. Bartschat, G. Garcia, F. Blanco, L.R. Hargreaves, D.B. Jones, R. Murrie, J.R. Brunton, M.J. Brunger, M. Hoshino, S.J. Buckman, Phys. Rev. A 83, 042702 (2011).

    ADS  Google Scholar 

  53. D. Wandschneider, M. Michalik, A. Heintz, J. Mol. Liq. 125, 2 (2006).

    Google Scholar 

  54. M.J. Frisch, et al. Gaussian 09, Revision B (2010), Vol. 1.

  55. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, London, 1981).

  56. M.E. Riley, D.G. Truhlar, J. Chem. Phys. 63, 2182 (1975).

    ADS  Google Scholar 

  57. X. Zhang, J. Sun, Y. Liu, J. Phys. B: At. Mol. Opt. Phys. 25, 1893 (1992).

    ADS  Google Scholar 

  58. F. Blanco, G. Garca, Phys. Lett. A 295, 178 (2002).

    ADS  Google Scholar 

  59. J. Greaves, J. Roboz, Mass Spectrometry for the Novice, CRC Press, London, 2013.

  60. E. Szot, L. Wójcik, K. Gauch , Vacuum 90, 141 (2013).

    ADS  Google Scholar 

  61. NIST Webbook, NIST Chemistry WebBook, NIST Standard Reference Database, Number 69, edited by P.J. Linstrom, W.G. Mallard, http://webbook.nist.gov, which provides the mass spectra for C1-C4 alcohols.

  62. A. Maccoll, Org. Mass Spectrom. 21, 601 (1986).

    Google Scholar 

  63. R.A. Friedel, J.L. Shultz, A.G. Sharkey, Anal. Chem. 28, 926 (1956).

    Google Scholar 

  64. T. Fiegele, G. Hanel, I. Torres, M. Lezius, T.D. Märk, J. Phys. B: At. Mol. Opt. Phys. 33, 4263 (2000).

    ADS  Google Scholar 

  65. S. Denifl, B. Sonnweber, G. Hanel, P. Scheier, T.D. Märk, Int. J. Mass. Spectrom. 238 (2004) 47.

    Google Scholar 

  66. Y. Kumar, M. Kumar, S. Kumar, R. Kumar, Atoms 1, 60 (2019).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina A. Lopes.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Marić, Joan Marler, James Sullivan, Juraj Fedor.

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, M.C.A., Pires, W.A.D., Nixon, K.L. et al. Electron impact ionization and fragmentation of biofuels. Eur. Phys. J. D 74, 88 (2020). https://doi.org/10.1140/epjd/e2020-100481-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100481-9

Navigation