Skip to main content
Log in

Nonlinear inverse spin galvanic effect in anisotropic disorder-free systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Spin transport phenomena in solid materials suffer limitations from spin relaxation associated to disorder or lack of translational invariance. Ultracold atoms, free of that disorder, can provide a platform to observe phenomena beyond the usual two-dimensional electron gas. By generalizing the approach used for isotropic two-dimensional electron gases, we theoretically investigate the inverse spin galvanic effect in the two-level atomic system in the presence of anisotropic Rashba-Dresselhaus spin-orbit couplings (SOC) and external magnetic field. We show that the combination of the SOC results in an asymmetric case: the total spin polarization considered for a small momentum has a longer spin state than in a two-dimensional electron gas when the SOC field prevails over the external electric field. Our results can be relevant for advancing experimental and theoretical investigations in spin dynamics as a basic approach for studying spin state control.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.D. Ganichev, M. Trushin, J. Schliemann, Spin polarisation by current, in Handbook of Spin Transport and Magnetism. 2nd edn. edited by E.Y. Tsymbal, I. Zutic (Chapman and Hall Boca, Raton, FL, 2016)

  2. E.L. Ivchenko, G.E. Pikus, Sov. J. Exp. Theor. Phys. Lett. 27, 604 (1978)

    ADS  Google Scholar 

  3. V.M. Edelstein, Solid State Commun. 73, 233 (1990)

    Article  ADS  Google Scholar 

  4. A.G. Aronov, Y.B. Lyanda-Geller, JETP Lett. 50, 431 (1989)

    ADS  Google Scholar 

  5. E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  6. YuA Bychkov, E.I. Rashba, JETP Lett. 39, 78 (1984)

    ADS  Google Scholar 

  7. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990)

    Article  ADS  Google Scholar 

  8. A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, Nat. Mater. 14, 871 (2015)

    Article  ADS  Google Scholar 

  9. Y.H. Park, H.-J. Kim, J. Chang, S.H. Han, J. Eom, H.-J. Choi, H.C. Koo, Appl. Phys. Lett. 103, 252407 (2013)

    Article  ADS  Google Scholar 

  10. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997)

    Article  ADS  Google Scholar 

  11. S. LaShell, B.A. McDougall, E. Jensen, Phys. Rev. Lett. 77, 3419 (1996)

    Article  ADS  Google Scholar 

  12. C.R. Ast, J. Henk, A. Ernst, L. Moreschini, M.C. Falub, D. Pacilé, P. Bruno, K. Kern, M. Grioni, Phys. Rev. Lett. 98, 186807 (2007)

    Article  ADS  Google Scholar 

  13. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  14. K. Ishizaka, M.S. Bahramy, Y. Murakami, Y. Tokura, Nat. Mater. 10, 521 (2011)

    Article  ADS  Google Scholar 

  15. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  16. C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  17. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  ADS  Google Scholar 

  18. K. Shen, G. Vignale, R. Raimondi, Phys. Rev. Lett. 112, 096601 (2014)

    Article  ADS  Google Scholar 

  19. G. Vignale, I.V. Tokatly, Phys. Rev. B 93, 035310 (2016)

    Article  ADS  Google Scholar 

  20. N. Goldman, G. Juzeliunas, P. Ohberg, I.B. Spielman, Light-induced gauge fields for ultracold atoms, in Reports on Progress in Physics (IOP Publishing Ltd, 2014), Vol. 77

  21. S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, L.-M. Duan, Phys. Rev. Lett. 97, 240401 (2006)

    Article  ADS  Google Scholar 

  22. X.J. Liu, M.F. Borunda, X. Liu, J. Sinova, Phys. Rev. Lett. 102, 046402 (2009)

    Article  ADS  Google Scholar 

  23. Y.-J. Lin, K. Jiménez-Garca, I.B. Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  24. S.-W. Su, S.-C. Gou, Q. Sun, L. Wen, W.-M. Liu, A.-C. Ji, J. Ruseckas, G. Juzeliūnas, Phys. Rev. A 93, 053630 (2016)

    Article  ADS  Google Scholar 

  25. C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Barbieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miatka, I., Barbieri, M. & Raimondi, R. Nonlinear inverse spin galvanic effect in anisotropic disorder-free systems. Eur. Phys. J. D 73, 107 (2019). https://doi.org/10.1140/epjd/e2019-90667-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90667-1

Keywords

Navigation