Skip to main content
Log in

Hierarchical axioms for quantum mechanics

  • Regular article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The origin of nonclassicality in quantum mechanics (QM) has been investigated recently by a number of authors with a view to identifying axioms that would single out quantum mechanics as a special theory within a broader framework such as convex operational theories. In these studies, the axioms tend to be logically unconnected in the sense that no specific ordering of the axioms is implied. Here, we identify a hierarchy of five nonclassical features that separate QM from a classical theory. By hierarchy is meant an axiomatic scheme where the succeeding axioms can be regarded as superstructure built on top of the structure provided by the preceding axioms. In a sense, the latter are necessary, but not sufficient, for the succeeding axioms. In our scheme, the axioms briefly are: (Q1) incompatibility and uncertainty; (Q2) contextuality; (Q3) entanglement; (Q4) nonlocality and (Q5) indistinguishability of identical particles. Such a hierarchy isn’t obvious when viewed from within the quantum mechanical framework, but, from the perspective of generalized probability theories (GPTs), relevant toy GPTs are introduced at each layer when useful to illustrate the action of the nonclassical features associated with the particular layer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Banerjee, A. Pathak, R. Srikanth, Physically inspired axioms for quantum mechanics (in press)

  2. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995)

  3. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)

  4. U. Leonhardt, Measuring the Quantum State of Light, Cambridge Studies in Modern Optics (Cambridge University Press, 1997)

  5. M. Genovese, Phys. Rep. 413, 319 (2005)

    ADS  MathSciNet  Google Scholar 

  6. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    ADS  Google Scholar 

  7. F. Verstraete, J. Dehaene, B. de Moor, J. Mod. Opt. 49, 1277 (2002)

    ADS  Google Scholar 

  8. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  9. J. Bell, Physics 1, 195 (1964)

    Google Scholar 

  10. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)

    ADS  Google Scholar 

  11. C. Brukner, S. Taylor, S. Cheung, V. Vedral, arXiv:quant-ph/0402127v1

  12. J. Barrett, Phys. Rev. A 75, 032304 (2007)

    ADS  Google Scholar 

  13. J. Barrett, N. Linden, S. Massar, S. Pironio, S. Popescu, D. Roberts, Phys. Rev. A 71, 022101 (2005)

    ADS  Google Scholar 

  14. G. Brassard, H. Buhrman, N. Linden, A.A. Méthot, A. Tapp, F. Unger, Phys. Rev. Lett. 96, 250401 (2006)

    ADS  MathSciNet  Google Scholar 

  15. A. Broadbent, A.A. Methot, Theor. Comput. Sci. 3, 358 (2006)

    Google Scholar 

  16. H. Barnum, J. Barrett, M. Leifer, A. Wilce, Phys. Rev. Lett. 99, 240501 (2007)

    ADS  Google Scholar 

  17. H. Barnum, Stud. Hist. Philos. Sci. B 34, 343 (2003)

    MathSciNet  Google Scholar 

  18. G. Chiribella, G.M. D’Ariano, P. Perinotti, Phys. Rev. A 81, 062348 (2010)

    ADS  Google Scholar 

  19. P. Janotta, H. Hinrichsen, J. Phys. A: Math. Theor. 47, 323001 (2014)

    Google Scholar 

  20. J. Oppenheim, S. Wehner, Science 330, 1072 (2010)

    ADS  MathSciNet  Google Scholar 

  21. M. Banik, M.R. Gazi, S. Ghosh, G. Kar, Phys. Rev. A 87, 052125 (2013)

    ADS  Google Scholar 

  22. R.W. Spekkens, Phys. Rev. A 71, 052108 (2005)

    ADS  Google Scholar 

  23. R.W. Spekkens, Phys. Rev. A 75, 032110 (2007)

    ADS  Google Scholar 

  24. C. Pfister, S. Wehner, Nat. Commun. 4, 1851 (2013)

    ADS  Google Scholar 

  25. L. Hardy, Quantum theory from five reasonable axioms, arXiv:quant-ph/0101012 (2001)

  26. L. Hardy, Stud. Hist. Philos. Sci. B 34, 381 (2003)

    Google Scholar 

  27. P. Mana, arXiv:quant-ph/0305117 (2003)

  28. M. Navascués, S. Pironio, A. Acn, New J. Phys. 10, 073013 (2008)

    ADS  Google Scholar 

  29. R. Clifton, J. Bub, H. Halvorson, Found. Phys. 33, 1561 (2003)

    MathSciNet  Google Scholar 

  30. A. Grinbaum, Br. J. Philos. Sci. 58, 387 (2007)

    MathSciNet  Google Scholar 

  31. S. Popescu, D. Rohrlich, Found. Phys. 24, 379 (1994)

    ADS  MathSciNet  Google Scholar 

  32. B. Toner, Proc. R. Soc. A 465, 59 (2009)

    ADS  MathSciNet  Google Scholar 

  33. H.K. Lo, H.F. Chau, Science 283, 2050 (1999)

    ADS  Google Scholar 

  34. W.K. Wootters, W.H. Zurek, Nature 299, 802 (1982)

    ADS  Google Scholar 

  35. N. Gisin, Phys. Lett. A 242, 1 (1998)

    ADS  MathSciNet  Google Scholar 

  36. P. Busch, T. Heinosaari, J. Schultz, N. Stevens, EPL 103, 10002 (2013)

    ADS  Google Scholar 

  37. S. Aravinda, R. Srikanth, A. Pathak, J. Phys. A: Math. Theor. 50, 465303 (2017)

    ADS  Google Scholar 

  38. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore (1984), p. 175

  39. S. Aravinda, A. Banerjee, A. Pathak, R. Srikanth, Int. J. Quantum Inf. 12, 1560020 (2014)

    MathSciNet  Google Scholar 

  40. I. Csiszar, J. Korner, IEEE Trans. Inf. Theory 24, 339 (1978)

    Google Scholar 

  41. U. Vazirani, T. Vidick, Phys. Rev. Lett. 113, 140501 (2014)

    ADS  Google Scholar 

  42. J. Barrett, L. Hardy, A. Kent, Phys. Rev. Lett. 95, 010503 (2005)

    ADS  Google Scholar 

  43. S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  44. A.A. Klyachko, M. Ali Can, S. Binicioğlu, A.S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008)

    ADS  MathSciNet  Google Scholar 

  45. L. Hardy, arXiv:quant-ph/9906123 (1999)

  46. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    ADS  Google Scholar 

  47. N. Brunner, N. Gisin, V. Scarani, New J. Phys. 7, 88 (2005)

    ADS  Google Scholar 

  48. G. Tóth, A. Acn, Phys. Rev. A 74, 030306 (2006)

    ADS  Google Scholar 

  49. M.L. Almeida, S. Pironio, J. Barrett, G. Tóth, A. Acn, Phys. Rev. Lett. 99, 040403 (2007)

    ADS  Google Scholar 

  50. R. Augusiak, M. Demianowicz, J. Tura, A. Acn, Phys. Rev. Lett. 115, 030404 (2015)

    ADS  Google Scholar 

  51. M.T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acn, N. Brunner, Phys. Rev. A 92, 032107 (2015)

    ADS  Google Scholar 

  52. R Srikanth, arXiv:1811.12409 (2018)

  53. Ll Masanes, A. Acin, N. Gisin, Phys. Rev. A 73, 012112 (2006)

    ADS  Google Scholar 

  54. S. Aaronson, A. Arkhipov, The computational complexity of linear optics, in Proceedings of the forty-third annual ACM symposium on Theory of computing (ACM, 2011), pp. 333–342

  55. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther, Nat. Photonics 7, 540 (2013)

    ADS  Google Scholar 

  56. H. Wang, W. Li, X. Jiang, Y.-M. He, Y.-H. Li, X. Ding, M.-C. Chen, J. Qin, C.-Z. Peng, C. Schneider, M. Kamp, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, J.P. Dowling, S. Hofling, C.-Y. Lu, J.-W. Pan, Phys. Rev. Lett. 120, 230502 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Additional information

Contribution to the Topical Issue “Quantum Correlations”, edited by Marco Genovese, Vahid Karimipour, Sergei Kulik, and Olivier Pfister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravinda, S., Pathak, A. & Srikanth, R. Hierarchical axioms for quantum mechanics. Eur. Phys. J. D 73, 207 (2019). https://doi.org/10.1140/epjd/e2019-90452-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90452-2

Keywords

Navigation