Skip to main content
Log in

Effect of intrinsic decoherence on entanglement of three polar molecules with two-dimensional rotation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The dynamic entanglement of three polar molecules with two-dimensional rotations is investigated under the influence of an electric field and intrinsic decoherence. The parameters of the electric field, such as strength and orientation, are tuned to tailor the rotational properties of the molecules. Due to the two-dimensional rotation and its dipole–dipole interaction, a mechanism of two-molecule transition occurs and leads to specific quantum states in the tripartite system. The components of the states are analyzed by varying the symmetry of the molecular arrangement. We evaluate the negativity to probe the entanglement characteristics of the system. The negativity shows distinct oscillating features for initial GHZ, W, and inverted-W states. These features are suppressed and eventually smoothed in the presence of intrinsic decoherence. We further analyze the contribution of the quantum states to the entanglement. Due to specific selection rules, only two of the states are found to dominate the evolution of the negativity. Among the three cases, the system based on the inverted-W state evolves with the lowest loss of entanglement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Dür, H.-J. Briegel, Phys. Rev. Lett. 90, 067901 (2003)

    Article  ADS  Google Scholar 

  2. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  6. A. Vaziri, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002)

    Article  ADS  Google Scholar 

  7. R. Reichle, D. Leibfried, E. Knill, J. Britton, R.B. Blakestad, J.D. Jost, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Nature (London) 443, 838 (2006)

    Article  ADS  Google Scholar 

  8. M. Steffen, M. Ansmann, R.C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E.M. Weig, A.N. Cleland, J.M. Martinis, Science 313, 1423 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. T.C. Wei, P.M. Goldbart, Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  11. S.J. Akhtarshenas, J. Phys. A 38, 6777 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  13. S.F. Yelin, K. Kirby, R. Côté, Phys. Rev. A 74, 050301(R) (2006)

    Article  ADS  Google Scholar 

  14. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  15. Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 135, 154102 (2011)

    Article  ADS  Google Scholar 

  16. J. Zhu, S. Kais, Q. Wei, D. Herschbach, B. Friedrich, J. Chem. Phys. 138, 024104 (2013)

    Article  ADS  Google Scholar 

  17. E. Charron, P. Milman, A. Keller, O. Atabek, Phys. Rev. A 75, 033414 (2007)

    Article  ADS  Google Scholar 

  18. K. Mishima, K. Yamashita, J. Chem. Phys. 130, 034108 (2009)

    Article  ADS  Google Scholar 

  19. K. Mishima, K. Yamashita, Chem. Phys. 361, 106 (2009)

    Article  Google Scholar 

  20. Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 134, 124107 (2011)

    Article  ADS  Google Scholar 

  21. Z.Y. Zhang, J.M. Liu, Sci. Rep. 7, 17822 (2017)

    Article  ADS  Google Scholar 

  22. J.X. Han, Y. Hu, Y. Jin, G.F. Zhang, J. Chem. Phys. 144, 134308 (2016)

    Article  ADS  Google Scholar 

  23. Y.J. Li, J.M. Liu, Acta Phys. Sin. 63, 200302 (2014)

    Google Scholar 

  24. Y.Y. Liao, Eur. Phys. J. D 71, 277 (2017)

    Article  ADS  Google Scholar 

  25. H. Yu, T.S. Ho, H. Rabitz, Phys. Chem. Chem. Phys. 20, 13008 (2018)

    Article  Google Scholar 

  26. I.Sh. Averbukh, R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001)

    Article  ADS  Google Scholar 

  27. B. Schmidt, B. Friedrich, Front. Phys. 2, 37 (2014)

    Article  Google Scholar 

  28. J. Floß, I.Sh. Averbukh, Phys. Rev. E 91, 052911 (2015)

    Article  ADS  Google Scholar 

  29. A. Shukla, S. Keshavamurthy, J. Chem. Sci. 129, 1005 (2017)

    Article  Google Scholar 

  30. H. Shima, T. Nakayama, Phys. Rev. A 70, 013401 (2004)

    Article  ADS  Google Scholar 

  31. Y.T. Shih, Y.Y. Liao, D.S. Chuu, Phys. Rev. B 68, 075402 (2003)

    Article  ADS  Google Scholar 

  32. C.G. Shen, G.F. Zhang, K.M. Fan, H.J. Zhu, Chin. Phys. B 23, 050310 (2014)

    Article  ADS  Google Scholar 

  33. K.M. Fan, G.F. Zhang, Eur. Phys. J. D 68, 163 (2014)

    Article  ADS  Google Scholar 

  34. L. Zheng, G.F. Zhang, Eur. Phys. J. D 71, 288 (2017)

    Article  ADS  Google Scholar 

  35. G.J. Milburn, Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  36. J.B. Xu, X.B. Zou, J.H. Yu, Eur. Phys. J. D 10, 295 (2000)

    Article  ADS  Google Scholar 

  37. C. Sabin, G. Garcia-Alcaine, Eur. Phys. J. D 48, 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  38. K. von Meyenn, Z. Phys. 231, 154 (1970)

    Article  ADS  Google Scholar 

  39. J.E. van den Berg, S.C. Mathavan, C. Meinema, J. Nauta, T.H. Nijbroek, K. Jungmann, H.L. Bethlem, S. Hoekstra, J. Mol. Spectr. 300, 22 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Yen Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, YY., Jian, SR. & Lee, JR. Effect of intrinsic decoherence on entanglement of three polar molecules with two-dimensional rotation. Eur. Phys. J. D 73, 47 (2019). https://doi.org/10.1140/epjd/e2019-90363-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90363-2

Keywords

Navigation