Skip to main content
Log in

Controlling the quantum rotational dynamics of a driven planar rotor by rebuilding barriers in the classical phase space

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The present work aims to control the rotational excitations of an ac-driven planar rotor, a model for rigid diatomic molecules, by rebuilding barriers in the classical phase space. The barriers are invariant tori with irrational winding ratios which are perturbatively constructed at desired locations in the phase space. We establish that constructing such barriers, equivalent to additional weak fields, can efficiently suppress the chaos leading to the control of various processes. The phase space barriers are shown to be effective in controlling the quantum dynamics as well. In particular, the efficiency of the phase space barriers towards controlling dynamical tunneling in the system is explored. Our studies are relevant to understanding the role of the chaotic regions in dynamical tunneling and for molecular alignment using bichromatic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tannor D J and Rice S A 1985 Control of selectivity of chemical reaction via control of wavepacket evolution J. Chem. Phys. 83 5013

    Article  CAS  Google Scholar 

  2. Shapiro M, Hepburn J W and Brumer P 1988 Simplified laser control of unimolecular reactions: simultaneous \((\omega _{1},\omega _{3})\) excitation Chem. Phys. Lett. 149 451

    Article  CAS  Google Scholar 

  3. Judson R S and Rabitz H 1992 Teaching lasers to control molecules Phys. Rev. Lett. 68 1500

    Article  CAS  Google Scholar 

  4. Daniel C et al. 2003 Deciphering the reaction dynamics underlying optimal control laser fields Science 299 536

    Article  CAS  Google Scholar 

  5. Langhojer F, Cardoza D, Baertschy M and Weinacht T 2005 Gaining mechanistic insight from closed loop learning control: the importance of basis in searching the space J. Chem. Phys. 122 014102

    Article  Google Scholar 

  6. Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2005 Quantum control and quantum control landscapes using intense shaped femtosecond pulses J. Mod. Opt. 52 2187

    Article  CAS  Google Scholar 

  7. Marquetand P and Engel V 2008 Analysis of laser fields for photoassociation and molecular stabilization derived from local control theory J. Phys. B: At. Mol. Opt. Phys. 41 074026

    Article  Google Scholar 

  8. Rice S A 2001 Interfering for the good of a chemical reaction Nature 409 422

    Article  CAS  Google Scholar 

  9. Franco I, Spanner M and Brumer P 2010 quantum interferences and their classical limit in laser driven coherent control scenarios Chem. Phys. 370 143

    Article  CAS  Google Scholar 

  10. Franco I and Brumer P 2006 Laser-induced spatial symmetry breaking in quantum and classical mechanics Phys. Rev. Lett. 97 040402

    Article  Google Scholar 

  11. Flach S, Yevtushenko O and Zolotrayuk Y 2000 Directed current due to broken time-space symmetry Phys. Rev. Lett. 84 2358

    Article  CAS  Google Scholar 

  12. Ivanov M, Bartram D and Smirnova O 2012 Coherent control in strongly driven multi-level systems: quantum vs classical features Mol. Phys. 110 1801

    Article  CAS  Google Scholar 

  13. Franco I and Brumer P 2008 Minimum requirements for laser-induced symmetry breaking in quantum and classical mechanics J. Phys. B: At. Mol. Opt. Phys. 41 074003

    Article  Google Scholar 

  14. van Leeuwen K A H et al. 1985 Microwave ionization of hydrogen atoms: experiment versus classical dynamics Phys. Rev. Lett. 55 2231

    Article  Google Scholar 

  15. Brown R C and Wyatt R E 1985 Quantum mechanical manifestation of cantori: wave-packet localization in stochastic regions Phys. Rev. Lett. 57 1

    Article  Google Scholar 

  16. Liu W-K, Wu B and Yuan J-M 1995 Nonlinear dynamics of chirped pulse excitation and dissociation of diatomic molecules Phys. Rev. Lett. 75 1292

    Article  CAS  Google Scholar 

  17. Davis M J and Heller E J 1981 Quantum Dynamical Tunneling in Bound States J. Chem. Phys. 75 246

    Article  CAS  Google Scholar 

  18. Lakshminarayan A 2001 Entangling power of quantized chaotic systems Phys. Rev. E 64 036207

    Article  CAS  Google Scholar 

  19. Casati G, Chirikov B V, Shepelyansky D L and Guarneri I 1987 Relevance of classical chaos in quantum mechanics: the hydrogen atom in a monochromatic field Phys. Rep. 154 79

    Article  Google Scholar 

  20. Bohigas O, Tomsovic S and Ullmo D 1993 Manifestations of classical phase space structures in quantum mechanics Phys. Rep. 223 43

    Article  Google Scholar 

  21. Holthaus M 1995 On the classical-quantum correspondence for periodically time dependent systems Chaos, Solitons & Fractals 5 1143

    Article  Google Scholar 

  22. Grifoni M and Hänggi P 1998 Driven quantum tunneling Phys. Rep. 304 229

    Article  CAS  Google Scholar 

  23. Buchleitner A, Delande D and Zakrzewski J 2002 Non-dispersive wave packets in periodically driven quantum systems Phys. Rep. 368 409

    Article  CAS  Google Scholar 

  24. Brodier O, Schlagheck P and Ullmo D 2002 Resonance-assisted tunneling Ann. Phys. 300 88

    Article  CAS  Google Scholar 

  25. Bird J P et al. 2003 Interference and interactions in open quantum dots Rep. Prog. Phys. 66 583

    Article  Google Scholar 

  26. Gong J and Brumer P 2005 Quantum chaos meets coherent control Annu. Rev. Phys. Chem. 56 1

    Article  CAS  Google Scholar 

  27. Keshavamurthy S 2007 Dynamical Tunneling in Molecules: Quantum Routes to Energy Flow Int. Rev. Phys. Chem. 26 521

    Article  CAS  Google Scholar 

  28. Jacquod Ph and Petitjean C 2009 Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom Adv. Phys. 58 67

    Article  Google Scholar 

  29. Denisov S, Flach S and Hänggi P 2014 Tunable transport with broken space-time symmetries Phys. Rep. 538 77

    Article  Google Scholar 

  30. Ciraolo G et al. 2004 Controlling chaotic transport in a Hamiltonian model of interest to magnetized plasmas J. Phys. A: Math. Gen. 37 3589

    Article  Google Scholar 

  31. Chandre C et al. 2005 Channeling chaos by building barriers Phys. Rev. Lett. 94 074101

    Article  CAS  Google Scholar 

  32. Vittot M, Chandre C, Ciraolo G and Lima R 2005 Localized control for non-resonant Hamiltonian systems Nonlinearity 18 423

    Article  Google Scholar 

  33. Huang S, Chandre C and Uzer T 2006 Reducing multiphoton ionization in a linearly polarized microwave field by local control Phys. Rev. A 74 053408

    Article  Google Scholar 

  34. Zion B Y and Horwitz L 2010 Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems Phys. Rev. E 81 046217

    Article  Google Scholar 

  35. de Sousa M C, Caldas I L, Rizzato F B, Pakter R and Steffens F M 2012 Controlling chaos in wave-particle interactions Phys. Rev. E 86 016217

    Article  Google Scholar 

  36. Sethi A and Keshavamurthy S 2009 Local phase space control and interplay of classical and quantum effects in dissociation of a driven Morse oscillator Phys. Rev. A 79 033416

    Article  Google Scholar 

  37. Moiseyev N, Korsch H J and Mirbach B 1994 Classical and quantum chaos in molecular rotational excitation by ac electric fields Z. Phys. D 29 125

    Article  CAS  Google Scholar 

  38. Mouchet A, Miniatura C, Kaiser R, Grémaud B and Delande D 2001 Chaos assisted tunneling with cold atoms Phys. Rev. E 64 016221

    Article  CAS  Google Scholar 

  39. Hensinger W K et al. 2001 Dynamical tunneling of cold atoms Nature 412 52

    Article  CAS  Google Scholar 

  40. Steck D A, Oskay W H and Raizen M G 2002 Observations of chaos-assisted tunneling between islands of stability Science 293 274

    Article  Google Scholar 

  41. Chirikov B V 1979 A universal instability of many-dimensional oscillator systems Phys. Rep. 52 263

    Article  Google Scholar 

  42. Berman G P and Kolovsky A R 1983 Structure and stability of the quasi-energy spectrum of two interacting quantum nonlinear resonances Phys. Lett. 95A 15

    Article  Google Scholar 

  43. Berman G P, Zaslavsky G M and Kolovsky A R 1982 On the spectrum of the system of interacting quantum nonlinear resonances Phys. Lett. 87A 152

    Article  CAS  Google Scholar 

  44. Kolovsky A R 1991 Regular and chaotic dynamics of a molecule affected by an external resonance field Phys. Lett. A 157 474

    Article  Google Scholar 

  45. Brodier O, Schlagheck P and Ullmo D 2001 Resonance-Assisted Tunneling in Near-Integrable Systems Phys. Rev. Lett. 87 064101

    Article  CAS  Google Scholar 

  46. Keshavamurthy S 2005 On dynamical tunneling and classical resonances J. Chem. Phys. 122 114109

    Article  Google Scholar 

  47. Tomsovic S and Ullmo D 1994 Chaos Assisted Tunneling Phys. Rev. E 50 145

    Article  CAS  Google Scholar 

  48. Mouchet A, Eltschka C and Schlagheck P 2006 Influence of classical resonances on chaotic tunneling Phys. Rev. E 74 026211

    Article  Google Scholar 

  49. Fishman S, Grempel D R and Prange R E 1982 Chaos, quantum recurrences, and Anderson localization Phys. Rev. Lett. 49 509

    Article  Google Scholar 

  50. B1ümel R, Fishman S and Smilansky U 1985 Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization J. Chem. Phys. 84 2604

  51. Casati G, Chirikov B V and Shepelyansky D L 1984 Quantum Limitations for Chaotic Excitation of the Hydrogen Atom in a Monochromatic Field Phys. Rev. Lett. 53 2525

    Article  CAS  Google Scholar 

  52. Brivio G P, Casati G, Perotti L and Guarneri I 1988 Quantum suppression of chaotic diffusion: Theory and experiment Physica D 33 51

    Article  CAS  Google Scholar 

  53. Escande D F and Doveil F 1981 Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems J. Stat. Phys. 26 257

    Article  Google Scholar 

  54. MacKay R S and Meiss J D 1988 Relation between quantum and classical thresholds for multiphoton ionization of excited atoms Phys. Rev. A 37 4702

    Article  CAS  Google Scholar 

  55. Geisel T, Radons G and Rubner J 1986 Kolmogorov-Arnol’d-Moser barriers in the quantum dynamics of chaotic systems Phys. Rev. Lett. 57 2883

    Article  CAS  Google Scholar 

  56. Maitra N T and Heller E J 2000 Quantum transport through cantori Phys. Rev. E 61 3620

    Article  CAS  Google Scholar 

  57. Shukla A and Keshavamurthy S 2015 One versus two photon control of dynamical tunneling: Influence of the irregular Floquet states J. Phys. Chem. B 119 11326

    Article  CAS  Google Scholar 

  58. Sethi A and Keshavamurthy S 2008 Bichromatically driven double well: Parametric perspective of the strong field control landscape reveals the influence of chaotic states J. Chem. Phys. 128 164117

    Article  Google Scholar 

  59. Takahashi K and Saito N 1985 Chaos and Husimi distribution in quantum mechanics Phys. Rev. Lett. 55 645

    Article  CAS  Google Scholar 

  60. Friedrich B and Herschbach D 1999 Manipulating molecules via combined static and laser fields J. Phys. Chem. A 103 10280

    Article  CAS  Google Scholar 

  61. Friedrich B and Herschbach D 1999 Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces J. Chem. Phys. 111 6157

    Article  CAS  Google Scholar 

  62. Seideman T 1995 Rotational excitation and molecular alignment in intense laser fields J. Chem. Phys. 103 7887

    Article  CAS  Google Scholar 

  63. Arango C A, Kennerly W W and Ezra G S 2005 Classical and quantum mechanics of diatomic molecules in tilted fields J. Chem. Phys. 122 184303

    Article  Google Scholar 

  64. Perotti L C 2010 Small phase-space structures and their relevance to pulsed quantum evolution: stepwise ionization of the excited hydrogen atom in a microwave pulse Phys. Rev. A 81 033407

    Article  Google Scholar 

Download references

Acknowledgements

AS thanks the Council for Scientific and Industrial Research (CSIR), India for a doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srihari Keshavamurthy.

Additional information

Dedicated to the memory of late Professor Charusita Chakravarty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Keshavamurthy, S. Controlling the quantum rotational dynamics of a driven planar rotor by rebuilding barriers in the classical phase space. J Chem Sci 129, 1005–1016 (2017). https://doi.org/10.1007/s12039-017-1312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1312-4

Keywords

Navigation