Skip to main content

Advertisement

Log in

The Auger spectra in argon induced by electron impact – new measurements with high resolution

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Auger spectrum of argon in the kinetic energy region (135–235 eV) has been measured using a non-monochromatic electron beam (incident energy from 313 to 2019 eV) at two ejection angles of 60° and 90° with a high resolution electrostatic analyzer. The electron impact energies of 313 and 323 eV have been used in order to disentangle the contribution of the ionization and decay of the 2s state. The systematic analysis of the measured spectra shows the dominance of the Coster-Kronig transitions from the 2s ionization in the energy region 135–159 eV and 208–235 eV, while the Auger transitions from the 2p ionization are dominant in the energy region 160–208 eV. The high resolution of the present work led to the observation of a certain number of new features in two energy regions 135–159 and 208–235 eV, respectively. Recent literature data on the cascade Auger processes and threshold formation of Ar2+ satellite states allow the assignment of some of them, while other have been left without assignments. The influence of the PCI effect on the line-shape, width and energy position of the features in the kinetic energy region 200–208 eV has been also investigated and the PCI shift versus excess energy above threshold compared with previous data and theoretical predictions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Jureta, B.P. Marinković, L. Avaldi, Eur. Phys. J. D 70, 199 (2016)

    Article  ADS  Google Scholar 

  2. G. Johansson, J. Hedman, A. Berndtsson, M. Klasson, R. Nilsson, J. Electron Spectrosc. Relat. Phenom. 2, 295 (1973)

    Article  Google Scholar 

  3. G.N. Ogurtsov, I.P. Flaks, S.V. Avakyan, Sov. Phys. JETP 30, 16 (1970)

    ADS  Google Scholar 

  4. M.E. Rudd, T. Jorgensen Jr, D.J. Volz, Phys. Rev. 151, 28 (1966)

    Article  ADS  Google Scholar 

  5. A. Hiltunen, T. Kylli, J. Mursu, O.P. Sairanen, H. Aksela, S. Aksela, J. Electron Spectrosc. Relat. Phenom. 87, 203 (1998)

    Article  Google Scholar 

  6. W. Mehlhorn, D. Stalherm, Z. Phys. 217, 294 (1968)

    Article  ADS  Google Scholar 

  7. L.O. Werme, T. Bergmark, K. Siegbahn, Phys. Scr. 8, 149 (1973)

    Article  ADS  Google Scholar 

  8. D. Ridder, J. Dieringer, N. Stolterfoht, J. Phys. B 9, L307 (1976)

    Article  ADS  Google Scholar 

  9. M. Žitnik, M. Kavčič, K. Bučar, B. Paripás, B. Palásthy, K. Tökési, Nucl. Instrum. Methods Phys. Res. B 267, 260 (2009)

    Article  ADS  Google Scholar 

  10. H. Pulkkinen, S. Aksela, O.-P. Sairanen, A. Hiltunen, H. Aksela, J. Phys. B 29, 3033 (1996)

    Article  ADS  Google Scholar 

  11. M.Y. Kuchiev, S.A. Sheinerman, Sov. Phys. Tech. Phys. 32, 879 (1987)

    Google Scholar 

  12. Y. Iketaki, T. Takayanagi, K. Wakiya, H. Suzuki, F. Koike, J. Phys. Soc. Jpn. 57, 391 (1988)

    Article  ADS  Google Scholar 

  13. G. Vkor, L. Tóth, S. Ricz, Á. Kövér, J. Végh, B. Sulik, J. Electron Spectrosc. Relat. Phenom. 83, 235 (1997)

    Article  Google Scholar 

  14. B. Paripás, G. Vkor, K. Tökési, A. Hiltunen, Nucl. Instrum. Methods Phys. Res. B 154, 209 (1999)

    Article  ADS  Google Scholar 

  15. B. Paripás, B. Palásthy, Nucl. Instrum. Methods Phys. Res. B 267, 275 (2009)

    Article  ADS  Google Scholar 

  16. B. Paripás, B. Palásthy, M. Žitnik, K. Tökési, Nucl. Instrum. Methods Phys. Res. B 279, 66 (2012)

    Article  ADS  Google Scholar 

  17. G. Stefani, L. Avaldi, A. Lahmam-Bennani, A. Duguet, J. Phys. B 19, 3787 (1986)

    Article  ADS  Google Scholar 

  18. D.K. Waterhouse, J.F. Williams, J. Phys. B 30, 2845 (1997)

    Article  ADS  Google Scholar 

  19. J.W. Cooper, S.H. Southworth, M.A. MacDonald, T. LeBrun, Phys. Rev. A 50, 405 (1994)

    Article  ADS  Google Scholar 

  20. F. von Busch, U. Kuetgens, J. Doppelfeld, S. Fritzsche, Phys. Rev. A 59, 2030 (1999)

    Article  ADS  Google Scholar 

  21. E.J. McGuire, Phys. Rev. A 11, 1880 (1975)

    Article  ADS  Google Scholar 

  22. K.G. Dyall, F.P. Larkins, J. Phys. B 15, 2793 (1982)

    Article  ADS  Google Scholar 

  23. J.E. Hansen, W. Persson, J. Phys. B 20, 693 (1987)

    Article  ADS  Google Scholar 

  24. R.P. Madden, K. Codling, Phys. Rev. Lett. 10, 516 (1963)

    Article  ADS  Google Scholar 

  25. G.C. King, M. Tronc, F.H. Read, R. Bradford, J. Phys. B 10, 2479 (1977)

    Article  ADS  Google Scholar 

  26. P. Lablanquie, S.M. Huttula, M. Huttula, L. Andric, J. Palaudoux, J.H.D. Eland, Y. Hikosaka, E. Shigemasa, K. Ito, F. Penent, Phys. Chem. Chem. Phys. 13, 18355 (2011)

    Article  Google Scholar 

  27. L. Avaldi, G. Dawber, N. Gulley, H. Rojas, G.C. King, R. Hall, M. Stuhec, M. Zitnik, J. Phys. B 30, 5197 (1997)

    Article  ADS  Google Scholar 

  28. S.A. Sheinerman, W. Kuhn, W. Mehlhorn, J. Phys. B 27, 5681 (1994)

    Article  ADS  Google Scholar 

  29. R.B. Barker, H.W. Berry, Phys. Rev. 151, 14 (1966)

    Article  ADS  Google Scholar 

  30. P.J. Hicks, S. Cvejanovic, J. Comer, F.H. Read, J.M. Sharp, Vacuum 24, 573 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Experimental data and drafting manuscript: J.J.J.; discussion and analysis of data, corrections and final version of the manuscript: J.J.J., B.P.M. and L.A.

Corresponding author

Correspondence to Bratislav P. Marinković.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Maric, Joan Marler, James Sullivan, Juraj Fedor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jureta, J.J., Marinković, B.P. & Avaldi, L. The Auger spectra in argon induced by electron impact – new measurements with high resolution. Eur. Phys. J. D 74, 12 (2020). https://doi.org/10.1140/epjd/e2019-100541-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100541-5

Navigation