Skip to main content

Auger Spectroscopy of Multielectron Atoms: Generalized Energy Formalism

  • Conference paper
  • First Online:
Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 33))

  • 596 Accesses

Abstract

An advanced version of relativistic energy formalism in the Auger spectroscopy of multielectron atomic systems is developed in order to calculate the fundamental energetic and spectroscopic parameters of the Auger decay process. The approach originally uses the Gell-Mann and Low adiabatic formulae in order to calculate an autoionization and Auger decays probabilities as well as the radiative oscillator strengths. The electron structure of a multielectron atom is calculated on the basis of the relativistic many-body perturbation theory (RMBPT) with ab initio model zeroth approximation and a correct accounting for the exchange-polarization corrections as the second and higher orders perturbation theory contributions. In order to provide gauge invariance performance, the RMBPT optimized zeroth approximation is generated on the basis of the relativistic criterion of minimization of the RMBPT second and higher orders exchange-polarization diagrams contributions into imaginary part of the atomic level energy shift. As an illustration, the results of computing the energy and spectral parameters of the resonant Auger decay for neon atomic system as well as some solids are listed. The results are compared with available experimental results as well as with the results, obtained within calculation on the basis of different semiempirical and ab initio methods. In whole there is a physically reasonable agreement between new theory results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aberg T, Hewat G (1979) Theory of Auger effect. Springer, Berlin

    Google Scholar 

  2. Glushkov AV (2020) Advanced relativistic energy approach in spectroscopy of autoionization states of multielectron atomic systems. In: Mammino L, Ceresoli D, Maruani J and  Brändas E (eds) Advances in Quantum Systems in Chemistry, Physics, and Biology. Series: Progress in Theoretical Chemistry and Physics, vol 32. Springer, Cham, pp 3–31

    Google Scholar 

  3. Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa

    Google Scholar 

  4. Maruani J (2016) The dirac electron: from quantum chemistry to holistic cosmology. J Chin Chem Soc 63(1):33–48

    Article  CAS  Google Scholar 

  5. Larkins FP (1976) Semi-empirical Auger electron energies. I. General method and K-LL line energies. J Phys B At Mol Opt Phys 9(1):47–58

    Google Scholar 

  6. Vijayakumar M, Gopinathan MS (1991) Theoretical Auger transition energies for atoms and ions through the relativistic and correlated local-density method. Phys Rev A 44(5):2850–2859

    Article  CAS  PubMed  Google Scholar 

  7. Glushkov AV, Ambrosov SV, Prepelitsa GP, Kozlovskaya VN (2003) Auger effect in atoms and solids: Calculation of characteristics of Auger decay in atoms, quasi-molecules and solids with application to surface composition analysis. Funct Mater. 10:206–210. Preprint OSENU NAMD-3 (2003)

    Google Scholar 

  8. Efimova EA, Chernyshev AS, Buyadzhi VV, Nikola LV (2019) Theoretical Auger spectroscopy of the neon: transition energies and widths. Photoelectronics. 28:24–31

    Google Scholar 

  9. Khetselius OYu (2011) Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint, Odessa

    Google Scholar 

  10. Glushkov AV (2006) Relativistic and correlation effects in spectra of atomic systems. Astroprint, Odessa

    Google Scholar 

  11. Ambrosov SV, Glushkov AV, Nikola LV (2006) Sensing the Auger spectra for solids: New quantum approach. Sens Electr Microsyst Techn Issue 3:46–50

    Google Scholar 

  12. Glushkov AV, Buyadzhi VV, Chernyshev AS, Efimova EA, Tsudik AV (2020) Theoretical Auger spectroscopy of solids: sensing energy parameters. Sens Electr Microsyst Techn 17(1):21–28

    Google Scholar 

  13. Chernyshev AS, Efimova EA, Buyadzhi VV, Nikola LV (2020) Cascade of Auger transitions in spectrum of xenon: theoretical data. Photoelectr 29:94–101

    Google Scholar 

  14. Glushkov AV, Malinovskaya SV, Loboda AV, Shpinareva IM, Gurnitskaya EP, Korchevsky DA (2005) Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: calculation of electron-collision strengths and rate coefficients for Ne-like plasma. J Phys Conf Ser 11:188–198

    Article  CAS  Google Scholar 

  15. Pahler M, Caldwell C, Schaphorst S, Krause M (1993) Intrinsic linewidths of neon 2s2p5(1,3P)nl2L correlation satellites. J Phys B At Phys 26:1617–1622

    CAS  Google Scholar 

  16. Sinanis C, Aspromallis G, Nicolaides C (1995) Electron correlation in Auger spectra of the Ne+ K 2s2p5(3,1P0)3p2S satellites. J Phys B At Phys 28:L423–L428

    CAS  Google Scholar 

  17. Armen GB, Larkins FP (1991) Valence Auger and X-ray participator and spectator processes for neon and argon atoms. J Phys B At Mol Opt Phys 24:741–760

    Article  CAS  Google Scholar 

  18. De Fanis A, Tamenori Y, Kitajima M, Tanaka H, Ueda K (2004) Doopler-free resonant Auger Raman spectroscopy on atoms and molecules at Spring-8. J Phys Conf Ser 183:63–72

    Google Scholar 

  19. Sakho I, Konté K, Ndao AS, Biaye M, Wagué A (2010) Calculations of (nl)2 and (3lnl’) autoionizing states in two-electron systems. Phys Scr 82:035301

    Article  CAS  Google Scholar 

  20. Greene CH, Aymar M (1991) Spin-orbit effects in the heavy alkaline-earth atoms. Phys Rev A 44(3):1773–1790

    Article  CAS  PubMed  Google Scholar 

  21. Van Leuwen R, Ubachs W, Hogervorst W (1994) Autoionization of low-lying 5dng states in barium. J Phys B At Mol Opt Phys 27:3891–3904

    Article  Google Scholar 

  22. Luc-Koenig E, Aymar M, Van Leeuwen R, Ubachs W, Hogervorst W (1995) Polarization effects in autoionization processes: the 5d5g states in barium. Phys Rev A 52:208–215

    Article  CAS  PubMed  Google Scholar 

  23. Bartlett RJ, Bellum JC, Brändas EJ (2009) The treatment of correlation effects in second-order properties. Int J Quant Chem S7:449–462

    Article  Google Scholar 

  24. Rittby M, Elander N, Brändas E (1984) Exterior complex scaling—a calculation of shape resonances in the A1Π state of CH+ using a realistic numeric potential. Chem Phys 87(1):55–62

    Article  CAS  Google Scholar 

  25. Wesdorp C, Noordam LD, Robicheaux F (1999) Dynamics of forced autoionization. Phys Rev A 60:R3377–R3380

    Article  CAS  Google Scholar 

  26. Klose JZ, Fuhr JR, Wiese WL (2002) Critically evaluated atomic transition probabilities for Ba I and Ba II. J Phys Chem Ref Data 31:217–230

    Article  CAS  Google Scholar 

  27. Bokor J, Freeman R, Cooke W (1982) Autoionization—pumped laser. Phys Rev Lett 48:1242–1247

    Article  CAS  Google Scholar 

  28. De Graaff RJ, Ubachs W, Hogervorst W (1992) 4fnf doubly excited autoioinizing states in barium. Phys Rev 45(1):166–178

    Article  Google Scholar 

  29. Nicolaides CA (1992) Hole-projection, saddle points and localization in the theory of autoionizing states. Phys Rev A 46:690–698

    Article  CAS  PubMed  Google Scholar 

  30. Glushkov AV, Khetselius OYu, Svinarenko AA, Buyadzhi VV (2015) Spectroscopy of autoionization states of heavy atoms and multiply charged ions. TEC, Odessa

    Google Scholar 

  31. Nikitin SI, Ostrovsky VN (1980) The autoionization of high Rydberg atomic states with large orbital momentum. J Phys B At Mol Opt Phys 13:1961–1984

    Article  CAS  Google Scholar 

  32. Yi J-H, Lee J, Kong HJ (1995) Autoionizing states of the ytterbium atom by three-photon polarization spectroscopy. Phys Rev A 51:3053–3057

    Google Scholar 

  33. Jong-hoon Y, Park H, Lee J (2001) Investigation of even parity autoionizing states of ytterbium atom by two-photon ionization spectroscopy. J Korean Phys Soc 39:916–920

    Google Scholar 

  34. Bylicki M (1998) Methods involving complex coordinates applied to atoms. Adv Quant Chem 32:207–226

    Article  CAS  Google Scholar 

  35. Poirier M (1997) Analysis of correlation effects in autoionizing doubly excited states of barium using Coulomb Green’s function. Z Phys D 39:189–193

    Article  CAS  Google Scholar 

  36. Chernenko AA, Beterov IM, Permyakova OI (2000) Modeling of amplification without inversion near transitions from autoionization levels of ytterbium atom. Laser Phys 10:133–138

    CAS  Google Scholar 

  37. Buyadzhi VV, Chernyakova Y, Smirnov AV, Tkach TB (2016) Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics 25:97–101

    Google Scholar 

  38. Buyadzh VV, Chernyakova Y, Antoshkina OA, Tkach TB (2017) Spectroscopy of multicharged ions in plasmas: oscillator strengths of Be-like ion Fe. Photoelectronics 26:94–102

    Article  Google Scholar 

  39. Laughlin C, Victor GA (1989) Model-potential methods. Adv At Mol Phys 25:163

    Article  Google Scholar 

  40. Cheng K, Kim Y, Desclaux J (1979) Electric dipole, quadrupole, and magnetic dipole transition probabilities of ions isoelectronic to the first-row atoms, Li through F. At Data Nucl Data Tabl 24:111

    Article  CAS  Google Scholar 

  41. Indelicato P, Desclaux JP (1993) Projection operator in the multiconfiguration Dirac-Fock method. Phys Scr 46:110

    Article  Google Scholar 

  42. Bieron J, Pyykkö P, Jonsson P (2005) Nuclear quadrupole moment of 201Hg. Phys Rev A 7:012502

    Article  CAS  Google Scholar 

  43. Lund AP, Ralph TC (2005) Coherent-state linear optical quantum computing gates using simplified diagonal superposition resource states. Phys Rev A 71:032502

    Article  CAS  Google Scholar 

  44. Feller D, Davidson ER (1989) An approximation to frozen natural orbitals through the use of the Hartree-Fock exchange potential. J Chem Phys 74:3977

    Article  Google Scholar 

  45. Dietz K, Heβ BA (1989) Single particle orbitals for configuration interaction derived from quantum electrodynamics. Phys Scr 39:682–688

    Google Scholar 

  46. Glushkov AV, Malinovskaya SV, Filatov VV (1989) S-Matrix formalism calculation of atomic transition probabilities with inclusion of polarization effects. Sov Phys J 32(12):1010–1014

    Article  Google Scholar 

  47. Khetselius OYu (2008) Relativistic calculating the spectral lines hyperfine structure parameters for heavy ions. AIP Conf Proc 1058:363–365

    Article  CAS  Google Scholar 

  48. Glushkov AV, Lovett L, Khetselius OYu, Gurnitskaya EP, Dubrovskaya Y, Loboda AV (2009) Generalized multiconfiguration model of decay of multipole giant resonances applied to analysis of reaction (µ-n) on the nucleus 40Ca. Int J Modern Phys A 24(2–3):611–615

    Article  CAS  Google Scholar 

  49. Glushkov AV, Malinovskaya SV, Sukharev DE, Khetselius OYu, Loboda AV, Lovett L (2009) Green’s function method in quantum chemistry: new numerical algorithm for the Dirac equation with complex energy and Fermi-model nuclear potential. Int J Quant Chem 109:1717–1727

    Article  CAS  Google Scholar 

  50. Khetselius OYu (2009) Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int J Quant Chem 109:3330–3335

    Google Scholar 

  51. Khetselius OYu (2009) Relativistic calculation of the hyperfine structure parameters for heavy elements and laser detection of the heavy isotopes. Phys Scr T135:014023

    Google Scholar 

  52. Glushkov AV, Yu KO, Gurnitskaya EP, Loboda AV, Sukharev DE (2009) Relativistic quantum chemistry of heavy ions and hadronic atomic systems: spectra and energy shifts. Theory and applications of computational chemistry. AIP Conf Proc 1102:168–171

    Article  CAS  Google Scholar 

  53. Khetselius OYu (2012) Quantum Geometry: New approach to quantization of the quasistationary states of Dirac equation for super heavy ion and calculating hyper fine structure parameters. Proc Intern Geometry Center 5(3–4):39–45

    Google Scholar 

  54. Quinet P, Argante C, Fivet V et al (2007) Atomic data for radioactive elements Ra I, Ra II, Ac I and Ac II and application to their detection in HD 101065 and HR 465. Astrophys Astron 474:307

    Article  CAS  Google Scholar 

  55. Biémont É, Fivet V, Quinet P (2004) Relativistic Hartree-Fock and Dirac-Fock atomic structure calculations in Fr-like ions Ra+, Ac2+, Th3+ and U5+. J Phys B At Mol Opt Phys 37:4193

    Article  CAS  Google Scholar 

  56. Froese Fischer C, Tachiev G (2004) Breit-Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences. At Data Nucl Data Tab 87:1

    Article  CAS  Google Scholar 

  57. Sapirstein J, Cheng KT (2005) Calculation of radiative corrections to E1 matrix elements in the neutral alkali metals. Phys Rev A 71:022503

    Article  CAS  Google Scholar 

  58. Shabaev VM, Tupitsyn II, Pachucki K et al (2005) Radiative and correlation effects on the parity-nonconserving transition amplitude in heavy alkali-metal atoms. Phys Rev A 72:062105

    Article  CAS  Google Scholar 

  59. Yerokhin V, Artemyev AN, Shabaev VM (2007) QED treatment of electron correlation in Li-like ions. Phys Rev A 75:062501

    Article  CAS  Google Scholar 

  60. Khetselius OYu, Florko TA, Svinarenko AA, Tkach TB (2013) Radiative and collisional spectroscopy of hyperfine lines of the Li-like heavy ions and Tl atom in an atmosphere of inert gas. Phys Scr T 153:014037

    Article  CAS  Google Scholar 

  61. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133

    Article  Google Scholar 

  62. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864

    Article  Google Scholar 

  63. Buyadzhi VV, Zaichko PA, Antoshkina OA, Kulakli TA, Prepelitsa GP, Ternovsky VB, Mansarliysky VF (2017) Computing of radiation parameters for atoms and multicharged ions within relativistic energy approach: advanced code. J Phys Conf Ser 905:012003

    Article  CAS  Google Scholar 

  64. Ternovsky EV, Buyadzhi VV, Tsudik AV, Svinarenko AA (2018) Relativistic calculation of Rydberg autoionization states parameters in spectrum of barium. Photoelectronics 27:34–43

    Article  Google Scholar 

  65. Rao J, Liu W, Li B (1994) Theoretical complex Stark energies of hydrogen by a complex-scaling plus B-spline approach. Phys Rev A 50:1916–1919

    Article  CAS  PubMed  Google Scholar 

  66. Rao J, Li B (1995) Resonances of the hydrogen atom in strong parallel magnetic and electric fields. Phys Rev A 51:4526–4530

    Article  CAS  PubMed  Google Scholar 

  67. Meng H-Y, Zhang Y-X, Kang S et al (2008) Theoretical complex Stark energies of lithium by a complex scaling plus the B-spline approach. J Phys B At Mol Opt Phys 41:155003

    Article  CAS  Google Scholar 

  68. Brändas E, Froelich P (1997) Continuum orbitals, complex scaling problem, and the extended virial theorem. Phys Rev A 16(6):2207

    Article  Google Scholar 

  69. Rittby M, Elander N, Brändas E (1981) Weyl’s theory and the complex-rotation method applied to phenomena associated with a continuous spectrum. Phys Rev A 24(3):1636

    Article  CAS  Google Scholar 

  70. Froelich P, Davidson ER, Brändas E (1993) Error estimates for complex eigenvalues of dilated Schr6dinger operators. Phys Rev A 28(5):2641

    Article  Google Scholar 

  71. Lipkin N, Moiseyev N, Brändas E (1989) Resonances by the exterior-scaling method within the framework of the finite-basis-set approximation. Phys Rev A 40(2):549

    Article  CAS  Google Scholar 

  72. Simon B (1979) The definition of molecular resonance curves by the method of exterior complex scaling. Phys Lett A 71(2–3):211–214

    Article  Google Scholar 

  73. Danilov V, Kruglyak Yu, Pechenaya V (1969) The electron density-bond order matrix and the spin density in the restricted CI method. Theor Chim Act 13(4):288–296

    Article  CAS  Google Scholar 

  74. Kruglyak Yu (2014) Configuration interaction in the second quantization representation: basics with application up to full CI. Sci Rise 4(2):98–115

    Google Scholar 

  75. Mammino L (2019) Complexes of hyperguinones A and B with a Cu2+ Ion: a DFT study. Adv Quant Chem 78:83–108

    Article  CAS  Google Scholar 

  76. Mammino L (2020) Complexes of Furonewguinone B with a Cu2+ Ion. A DFT Study In: Mammino L, Ceresoli D, Maruani J, Brändas E (eds) Advances in quantum systems in chemistry, physics, and biology: selected proceedings of QSCP-XXIII (Kruger Park, South Africa, September 2018). Series: progress in theoretical chemistry and physics, vol 32. Springer, Cham, pp 159–182

    Google Scholar 

  77. Cerjan C, Hedges R, Holt C et al (1978) Complex coordinates and the Stark effect. Int J Quant Chem 14(4):393–418

    Article  CAS  Google Scholar 

  78. Luc-Koenig E, Bachelier A (1980) Systematic theoretical study of the Stark spectrum of atomic hydrogen. I. Density of continuum states. J Phys B At Mol Phys 13:1743–1756

    Article  CAS  Google Scholar 

  79. Ignatenko AV,  Buyadzhi AA, Buyadzhi VV, Kuznetsova AA, Mashkantsev AA, Ternovsky EV (2019) Nonlinear chaotic dynamics of quantum systems: molecules in an electromagnetic field. Adv Quant Chem 78:149–170. https://doi.org/10.1016/bs.aiq.2018.06.006. Elsevier

  80. Maquet A, Chu SI, Reinhardt WP (1983) Stark ionization in dc and ac fields: an L2 complex-coordinate approach. Phys Rev A 27(6):2946–2970

    Article  CAS  Google Scholar 

  81. Reinhardt WP (1982) Padé summations for the real and imaginary parts of atomic stark eigenvalues. Int J Quant Chem 21(1):133–146

    Article  CAS  Google Scholar 

  82. Franceschini V, Grecchi V, Silverstone H (1985) Complex energies from real perturbation series for the LoSurdo-Stark effect in hydrogen by Borel-Padé approximants. J Phys Rev A 32(3):1338

    Article  CAS  Google Scholar 

  83. Benassi L, Grecchi V (1980) Resonances in the Stark effect and strongly asymptotic approximants. J Phys B At Mol Phys 13(5):911

    Article  CAS  Google Scholar 

  84. Farrelly D, Reinhardt WP (1983) Uniform semiclassical and accurate quantum calculations of complex energy eigenvalues for the hydrogen atom in a uniform electric field. J Phys B At Mol Phys 16(12):2103

    Article  CAS  Google Scholar 

  85. Filho O, Fonseca A, Nazareno H et al (1990) Different approach to the Stark effect: application to the hydrogen ground state. Phys Rev A 42(7):4008–4014

    Article  CAS  PubMed  Google Scholar 

  86. Kondratovich VD, Ostrovsky VN (1984) Resonance and interference phenomena in the photoionisation of a hydrogen atom in a uniform electric field. II. Overlapping resonances and interference. J Phys B At Mol Phys 17(10):2011

    Google Scholar 

  87. Telnov DA (1989) DC Stark effect in a hydrogen atom via Sturmian expansions. J Phys B At Mol Opt Phys 22(14):L399–L403

    Article  CAS  Google Scholar 

  88. Ho Y-K (1983) The method of complex coordinate rotation and its applications to atomic collision processes. Phys Rev 99(1):1–68

    CAS  Google Scholar 

  89. Ivanov IA, Ho Y-K (2004) Complex rotation method for the Dirac Hamiltonian. Phys Rev A 69:023407

    Article  CAS  Google Scholar 

  90. González-Férez R, Schweizer W (2000) In: Hernández-Laguna A, Maruani J, McWeeny R, Wilson S (eds) Quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 23. Springer, Berlin, p 17

    Google Scholar 

  91. Sahoo S, Ho Y-K (2000) Stark effect on the low-lying excited states of the hydrogen and the lithium atoms. J Phys B At Mol Opt Phys 33:5151–5164

    Article  CAS  Google Scholar 

  92. Sahoo S, Ho Y-K (2000) The complex absorbing potential method (CAP) to study the Stark effect in hydrogen and lithium. J Phys B At Mol Opt Phys 33:2195–2206

    Article  CAS  Google Scholar 

  93. Zimmerman ML, Littman MG, Kash MM et al (1979) Stark structure of the Rydberg states of alkali-metal atoms. Phys Rev A 20:2251

    Article  CAS  Google Scholar 

  94. Harmin DA (1982) Theory of the Stark effect. Phys Rev A 26:2656

    Article  CAS  Google Scholar 

  95. Buyadzhi VV (2015) Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectronics 24:128–133

    Google Scholar 

  96. Kuznetsova AA, Glushkov AV, Ignatenko AV, Svinarenko AA, Ternovsky VB (2019) Spectroscopy of multielectron atomic systems in a DC electric field. Adv Quantum Chem 78:287–306. Elsevier; https://doi.org/10.1016/bs.aiq.2018.06.005

  97. Khetselius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa

    Google Scholar 

  98. Glushkov AV (2005) Atom in electromagnetic field. KNT, Kiev

    Google Scholar 

  99. Glushkov AV, Ivanov LN (1993) DC strong-field Stark effect: consistent quantum-mechanical approach. J Phys B At Mol Opt Phys 26:L379–L386

    Article  CAS  Google Scholar 

  100. Glushkov AV (2013) Operator perturbation theory for atomic systems in a strong DC electric field. In: Hotokka M, Brändas E, Maruani J, Delgado-Barrio G (eds) Advances in quantum methods and applications in chemistry, physics, and biology. Series: progress in theoretical chemistry and physics, vol 27. Springer, Cham, pp 161–177

    Google Scholar 

  101. Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) DC strong field Stark effect for non-hydrogenic atoms: new consistent quantum mechanical approach. Int J Quant Chem 99(5):936–939

    Article  CAS  Google Scholar 

  102. Glushkov AV, Malinovskaya SV, Loboda AV, Shpinareva IM, Prepelitsa GP (2006) Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules. J Phys Conf Ser 35:420–424

    Article  CAS  Google Scholar 

  103. Glushkov AV, Ambrosov SV, Ignatenko AV (2001) Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: photoionization, Stark effect, resonances in ionization continuum and stochasticity. Photoelectronics 10:103–106

    Google Scholar 

  104. Ignatenko AV (2007) Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics 16:71–74

    Google Scholar 

  105. Benvenuto F, Casati G, Shepelyansky DL (1994) Rydberg Stabilization of atoms in strong fields: “magic” mountain in chaotic sea. J Phys B 94:481–486

    CAS  Google Scholar 

  106. Buchleitner A, Delande D (1997) Secular motion of three-dimensional Rydberg states in a microwave field. Phys Rev A 55:R1585

    Article  CAS  Google Scholar 

  107. Gallagher TF, Noel M, Griffith MW (2000) Classical subharmonic resonances in microwave ionization of lithium Rydberg atoms. Phys Rev A 62:063401

    Article  Google Scholar 

  108. Grutter M, Zehnder O, Softley T et al (2008) Spectroscopic study and multichannel quantum defect theory analysis of the Stark effect in Rydberg states of neon. J Phys B At Mol Opt Phys 41:115001

    Article  CAS  Google Scholar 

  109. Dunning FB, Mestayer JJ, Reinhold CO et al (2009) Engineering atomic Rydberg states with pulsed electric fields. J Phys B At Mol Opt Phys 42:022001

    Article  CAS  Google Scholar 

  110. Glushkov AV, Malinovskaya SV, Svinarenko AA, Vitavetskaya LA (2005) Sensing spectral hierarchy, quantum chaos, chaotic diffusion and dynamical stabilisation effects in a multi-photon atomic dynamics with intense laser field. Sens Electr Microsyst Tech 2(2):29–36

    Google Scholar 

  111. Glushkov AV, Ternovsky VB, Buyadzhi VV, Prepelitsa GP (2014) Geometry of a relativistic quantum chaos: new approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos Proc. Intern Geom Center 7(4):60–71

    Google Scholar 

  112. Glushkov AV (1990) Relativistic polarization potential of a many-electron atom. Sov Phys J 33(1):1–4

    Google Scholar 

  113. Braun MA, Dmitriev YuYu, Labzovsky LN (1969) Relativistic theory of the heavy atom. JETP 57:2189

    CAS  Google Scholar 

  114. Ivanov LN, Ivanova EP (1996) Method of Sturm orbitals in calculation of physical characteristics of radiation from atoms and ions. JETP 83:258–266

    Google Scholar 

  115. Ivanov LN, Ivanova EP (1979) Atomic ion energies for Na-like ions by a model potential method Z = 25–80. At Data Nucl Data Tabl 24:95

    Article  CAS  Google Scholar 

  116. Ivanova EP, Ivanov LN, Glushkov AV, Kramida A (1985) High order corrections in the relativistic perturbation theory with the model zeroth approximation, Mg-like and Ne-like ions. Phys Scr 32:513–522

    Article  CAS  Google Scholar 

  117. Ivanova EP, Glushkov AV (1986) Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J Quant Spectr Rad Transfer 36:127–145

    Article  CAS  Google Scholar 

  118. Ivanov LN, Ivanova EP, Aglitsky EV (1988) Modern trends in the spectroscopy of multicharged ions. Phys Rep 164:315–317

    Article  CAS  Google Scholar 

  119. Glushkov AV, Ivanov LN., Ivanova EP (1986) Radiation decay of atomic states. Generalized energy approach. In: Autoionization phenomena in atoms. Moscow State Univ., Moscow, p 58

    Google Scholar 

  120. Glushkov AV, Ivanov LN (1992) Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys Lett A 170:33–36

    Article  CAS  Google Scholar 

  121. Glushkov AV (2012) Advanced relativistic energy approach to radiative decay processes in multielectron atoms and multicharged ions. In: Nishikawa K, Maruani J, Brandas E, Delgado-Barrio G, Piecuch P (eds) Quantum systems in chemistry and physics: progress in methods and applications. series: progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 231–252

    Google Scholar 

  122. Glushkov AV (2019) Multiphoton spectroscopy of atoms and nuclei in a laser field: relativistic energy approach and radiation atomic lines moments method. Adv Quant Chem 78:253–285. Elsevier. https://doi.org/10.1016/bs.aiq.2018.06.004

  123. Khetselius OY (2019) Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for Li-like multicharged ions. Adv Quant Chem 78:223–251. Elsevier. https://doi.org/10.1016/bs.aiq.2018.06.001

  124. Ivanov LN, Letokhov VS (1985) Spectroscopy of autoionization resonances in heavy elements. Com Mod Phys D At Mol Phys 4:169–184

    Google Scholar 

  125. Ivanova EP, Grant IP (1998) Oscillator strength anomalies in the neon isoelectronic sequence with applications to x-ray laser modelling. J Phys B At Mol Opt Phys 31:2871

    Article  CAS  Google Scholar 

  126. Ivanova EP, Zinoviev NA (1999) Calculation of the vacuum-UV radiation gains in transitions of Ne-like argon in capillary discharges. Quant Electr 29:484

    Article  CAS  Google Scholar 

  127. Ivanova EP, Zinoviev NA (2001) The possibility of X-ray lasers based on the innershell transitions of Ne-like ions. Phys Lett A 274:239

    Article  Google Scholar 

  128. Bekov GI, Vidolova-Angelova E, Ivanov LN, Letokhov VS, Mishin V (1981) Laser spectroscopy of narrow doubly excited autoionizing states of ytterbium atoms. JETP 80(3):866

    CAS  Google Scholar 

  129. Vidolova-Angelova E, Ivanov LN, Ivanova EP et al (1986) Relativistic perturbation method for investigating the radiation decay of highly excited many electron atoms: Tm atom. J Phys B At Mol Opt Phys 19:2053–2069

    Article  CAS  Google Scholar 

  130. Vidolova-Angelova E, Ivanov LN (1991) Autoionizing Rydberg states of thulium. Re-orientation decay due to monopole interaction. J Phys B At Mol Opt Phys 24:4147–4158

    Article  CAS  Google Scholar 

  131. Ivanov LN, Ivanova EP, Knight L (1993) Energy approach to consistent QED theory for calculation of electron-collision strengths: Ne-like ions. Phys Rev A 48:4365

    Article  CAS  PubMed  Google Scholar 

  132. Glushkov AV, Ivanov LN, Letokhov VS (1991) Nuclear quantum optics. Preprint of Institute for Spectroscopy of the USSR Academy of Sciences. ISAN, Moscow-Troitsk, AS-4

    Google Scholar 

  133. Letokhov VS, Ivanov LN, Glushkov AV (1992) Laser separation of heavy lanthanides and actinides isotopes: autoionization resonances and decay in electric field. Preprint of Institute for Spectroscopy of the USSR Academy of Sciences, ISAN, Moscow-Troitsk, AS, p N5

    Google Scholar 

  134. Glushkov AV (2005) Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions. In: Grzonka D, Czyzykiewicz R, Oelert W et al (eds) Low Energy Antiproton Physics, vol 796. AIP Conf Proc, New York,  pp 206–210

    Google Scholar 

  135. Glushkov AV, Ivanov LN (1992) Shift and deformation of radiation atomic lines in the laser emission field. Multiphoton processes. Preprint of Institute for Spectroscopy of the USSR Academy of Sciences. ISAN, Moscow-Troitsk, AS N3

    Google Scholar 

  136. Glushkov AV, Ivanov LN (1992) A broadening of the thulium atom autoionization resonances in a weak electric field. Preprint of Institute for Spectroscopy of the USSR Academy of Sciences. ISAN, Moscow-Troitsk, AS N2

    Google Scholar 

  137. Glushkov AV (2008) QED theory of radiation emission and absorption lines for atoms and ions in a strong laser field. AIP Conf Proc 1058:134–136

    Article  CAS  Google Scholar 

  138. Glushkov AV, Loboda AV (2007) Calculation of the characteristics of radiative multiphoton absorption and emission lines when an atom interacts with pulsed laser radiation. J Appl Spectr (Springer) 74:305–309

    Article  CAS  Google Scholar 

  139. Glushkov AV (2012) Spectroscopy of cooperative muon-gamma-nuclear processes: energy and spectral parameters. J Phys Conf Ser 397:012011

    Article  CAS  Google Scholar 

  140. Glushkov AV (2014) Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J Phys Conf Ser 548:012020

    Article  Google Scholar 

  141. Khetselius OY (2012) Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J Phys Conf Ser 397:012012

    Google Scholar 

  142. Khetselius OY (2012) Relativistic energy approach to cooperative electron-γ-nuclear processes: NEET effect. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 217–229

    Google Scholar 

  143. Glushkov AV, Kondratenko PA, Buyadgi VV, Kvasikova AS, Sakun TN, Shakhman AN (2014) Spectroscopy of cooperative laser electron-γ-nuclear processes in polyatomic molecules. J Phys Conf Ser 548:012025

    Article  Google Scholar 

  144. Buyadzhi VV, Glushkov AV, Lovett L (2014) Spectroscopy of atoms and nuclei in a strong laser field: AC Stark effect and multiphoton resonances. Photoelectronics 23:38–43

    Google Scholar 

  145. Glushkov AV, Svinarenko AA, Khetselius OY, Buyadzhi VV, Florko TA, Shakhman AN (2015) Relativistic quantum chemistry: an advanced approach to the construction of the Green function of the Dirac equation with complex energy and mean-field nuclear potential. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Frontiers in quantum methods and applications in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 29. Springer, Cham, pp 197–217

    Google Scholar 

  146. Malinovskaya SV, Glushkov AV, Khetselius OY (2008) New laser-electron nuclear effects in the nuclear γ transition spectra in atomic and molecular systems. In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Series: Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 525–541

    Google Scholar 

  147. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Optics and spectroscopy of cooperative laser-electron nuclear processes in atomic and molecular systems—new trend in quantum optics. Eur Phys J ST 160:195–204

    Article  Google Scholar 

  148. Glushkov AV, Malinovskaya SV, Ambrosov SV, Shpinareva IM, Troitskaya OV (1997) Resonances in quantum systems in strong external fields consistent quantum approach. J Tech Phys 38(2):215–218

    CAS  Google Scholar 

  149. Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Spectroscopy of cooperative laser-electron nuclear effects in multiatomic molecules. Molec Phys 106:1257–1260

    Article  CAS  Google Scholar 

  150. Glushkov AV, Khetselius OY, Svinarenko AA (2012) Relativistic theory of cooperative muon-γ -nuclear processes: Negative muon capture and metastable nucleus discharge. In: Hoggan P, Brändas E, Maruani J, Delgado-Barrio G, Piecuch P (eds) Advances in the theory of quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 22. Springer, Dordrecht, pp 51–68

    Google Scholar 

  151. Glushkov AV, Khetselius OY, Lovett L (2009) Electron-β-nuclear spectroscopy of atoms and molecules and chemical bond effect on the β-decay parameters. In: Piecuch P, Maruani J, Delgado-Barrio G, Wilson S (eds) Advances in the theory of atomic and molecular systems dynamics, spectroscopy, clusters, and nanostructures. Series: progress in theoretical chemistry and physics, vol 20. Springer, Dordrecht, pp 125–152

    Google Scholar 

  152. Glushkov AV, Khetselius OY, Loboda AV, Svinarenko AA (2008) QED approach to atoms in a laser field: Multi-photon resonances and above threshold ionization In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Series: Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 543–560

    Google Scholar 

  153. Glushkov AV, Yu KO, Svinarenko AA, Prepelitsa GP, Shakhman AN (2010) Spectroscopy of cooperative laser-electron nuclear processes in diatomic and multiatomic molecules. AIP Conf Proc 1290(1):269–273

    Article  CAS  Google Scholar 

  154. Khetselius OY, Glushkov AV, Dubrovskaya YV, Chernyakova YG, Ignatenko AV, Serga IN, Vitavetskay LA (2018) Relativistic quantum chemistry and spectroscopy of exotic atomic systems with accounting for strong interaction effects. In: Wang YA, Thachuk M, Krems R, Maruani J (eds) Concepts, methods and applications of quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 31. Springer, Cham, pp 71–91

    Google Scholar 

  155. Khetselius OYu (2010) Relativistic hyperfine structure spectral lines and atomic parity non-conservation effect in heavy atomic systems within qed theory. AIP Conf Proc 1290(1):29–33

    Article  CAS  Google Scholar 

  156. Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) Resonance states of compound super-heavy nucleus and EPPP in heavy nucleus collisions. In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Scientific, Singapore, pp 126–132

    Chapter  Google Scholar 

  157. Glushkov AV, Khetselius OY, Gurnitskaya EP, Loboda AV, Florko TA, Sukharev DE, Lovett L (2008) Gauge-invariant QED perturbation theory approach to calculating nuclear electric quadrupole moments, hyperfine structure constants for heavy atoms and ions. In: Wilson S, Grout P, Maruani J, Delgado-Barrio G, Piecuch P (eds) Frontiers in quantum systems in chemistry and physics. Series: progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 507–524

    Google Scholar 

  158. Malinovskaya SV, Glushkov AV (1992) Calculation of the spectra of potassium-like multicharged ions. Russ Phys J 35(11):999–1004

    Article  Google Scholar 

  159. Glushkov AV, Butenko Y, Serbov NG, Ambrosov SV, Orlova VE, Orlov SV, Balan AK, Dormostuchenko GM (1996) Calculation of the oscillator strengths in Fr-like multiply charged ions. J Appl Spectrosc 63(1):28–30

    Article  Google Scholar 

  160. Glushkov AV, Kondratenko PA, YaI L, Fedchuk AP, Svinarenko AA, Lovett L (2009) Electrodynamical and quantum-chemical approaches to modelling the electrochemical an catalytic processes on metals, metal alloys and semiconductors. Int J Quant Chem 109(14):3473–3481

    Article  CAS  Google Scholar 

  161. Florko TA, Ambrosov SV, Svinarenko AA, Tkach TB (2012) Collisional shift of the heavy atoms hyperfine lines in an atmosphere of the inert gas. J Phys Conf Ser 397(1):012037

    Article  CAS  Google Scholar 

  162. Glushkov AV (1992) Negative ions of inert gases. JETP Lett 55(2):97–100

    Google Scholar 

  163. Glushkov AV, Khetselius OYu, Svinarenko AA (2013) Theoretical spectroscopy of autoionization resonances in spectra of lanthanide atoms. Phys Scr T 153:014029

    Article  CAS  Google Scholar 

  164. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2005) QED calculation of heavy multicharged ions with account for correlation, radiative and nuclear effects. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barion G (eds) Recent advances in theory of physical and chemical systems. Recent advances in the theory of chemical and physical systems. Series: progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 285–299

    Google Scholar 

  165. Malinovskaya SV, Glushkov AV, Dubrovskaya YV, Vitavetskaya LA (2006) Quantum calculation of cooperative muon-nuclear processes: discharge of metastable nuclei during negative muon capture. In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barion G (eds) Recent Advances in theory of physical and chemical systems. Recent advances in the theory of chemical and physical systems series: progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 301–307

    Google Scholar 

  166. Malinovskaya SV, Glushkov AV, Khetselius OYu, Svinarenko AA, Mischenko EV, Florko TA (2009) Optimized perturbation theory scheme for calculating the interatomic potentials and hyperfine lines shift for heavy atoms in the buffer inert gas. Int J Quant Chem 109:3325–3329

    Article  CAS  Google Scholar 

  167. Glushkov AV, Khetselius OYu, Lopatkin YM, Florko TA, Kovalenko OA, Mansarliysky VF (2014) Collisional shift of hyperfine line for rubidium in an atmosphere of the buffer inert gas. J Phys Conf Ser 548:012026

    Article  Google Scholar 

  168. Khetselius OY, Lopatkin YM, Dubrovskaya YV, Svinarenko AA (2010) Sensing hyperfine-structure, electroweak interaction and parity non-conservation effect in heavy atoms and nuclei: new nuclear-QED approach. Sens Electr Microsyst Tech 7(2):11–19

    Google Scholar 

  169. Glushkov AV, Dan’kov SV, Prepelitsa G, Polischuk VN, Efimov AV (1997) Qed theory of nonlinear interaction of the complex atomic systems with laser field multi-photon resonances. J Techn Phys 38(2):219–222

    CAS  Google Scholar 

  170. Glushkov AV, Malinovskaya SV, Gurnitskaya EP, Khetselius OYu, Dubrovskaya Y (2006) Consistent quantum theory of recoil induced excitation and ionization in atoms during capture of neutron. J Phys Conf Ser 35:425–430

    Article  CAS  Google Scholar 

  171. Glushkov AV, Malinovskay SV, Prepelitsa GP, Ignatenko V (2005) Manifestation of the new laser-electron nuclear spectral effects in the thermalized plasma: QED theory of co-operative laser-electron-nuclear processes. J Phys Conf Ser 11:199–206

    Article  CAS  Google Scholar 

  172. Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Consistent QED approach to calculation of electron-collision excitation cross sections and strengths: Ne-like ions. Int J Quant Chem 104:562–569

    Google Scholar 

  173. Glushkov AV, Khetselius OYu, Loboda AV, Ignatenko AV, Svinarenko AA, Korchevsky DA, Lovett L (2008) QED approach to modeling spectra of the multicharged ions in a plasma: oscillator and electron-ion collision strengths. AIP Conf Proc 1058:175–177

    Article  CAS  Google Scholar 

  174. Glushkov AV (1988) True effective molecular valency hamiltonian in a logical semiempricial theory. J Struct Chem 29(4):495–501

    Article  Google Scholar 

  175. Glushkov AV (1990) Correction for exchange and correlation effects in multielectron system theory. J Struct Chem 31(4):529–532

    Article  Google Scholar 

  176. Glushkov AV, Efimov VA, Gopchenko ED, Dan’kov SV, Polishchyuk VN, Goloshchak OP (1998) Calculation of spectroscopic characteristics 4 of alkali-metal dimers on the basis of a model perturbation theory. Opt Spectr 84(5):670–678

    Google Scholar 

  177. Svinarenko AA, Glushkov AV, Khetselius OY, Ternovsky VB, Dubrovskaya YuV, Kuznetsova AA, Buyadzhi VV (2017) Theoretical spectroscopy of rare-earth elements: spectra and autoionization resonance. In: Jose EA  Orjuela (ed) Rare Earth Element. InTech, pp 83–104. https://doi.org/10.5772/intechopen.69314

  178. Buyadzhi VV, Glushkov AV, Mansarliysky VF, Ignatenko AV, Svinarenko AA (2015) Spectroscopy of atoms in a strong laser field: New method to sensing AC Stark effect, multiphoton resonances parameters and ionization cross-sections. Sensor Electr Microsys Tech 12(4):27–36

    Google Scholar 

  179. Glushkov AV, Yu GM, Ignatenko AV, Smirnov AV, Serga IN, Svinarenko AA, Ternovsky EV (2017) Computational code in atomic and nuclear quantum optics: advanced computing multiphoton resonance parameters for atoms in a strong laser field. J Phys Conf Ser 905(1):012004

    Article  CAS  Google Scholar 

  180. Dubrovskaya YuV, Khetselius OYu, Vitavetskaya LA, Ternovsky VB, Serga IN (2019) Quantum chemistry and spectroscopy of pionic atomic systems with accounting for relativistic, radiative, and strong interaction effects. Adv Quant Chem, vol 78. Elsevier, pp 193–222. https://doi.org/10.1016/bs.aiq.2018.06.003

  181. Malinovskaya SV, Dubrovskaya YV, Vitavetskaya LA (2005) Advanced quantum mechanical calculation of the beta decay probabilities In: Grzonka D, Czyzykiewicz R, Oelert W, Rozek T, Winter P (eds) Low energy antiproton physics. AIP: New York, AIP Conf Proc 796:201–205

    Google Scholar 

  182. Glushkov AV, Khetselius OYu, Svinarenko AA, Buyadzhi VV, Ternovsky VB, Kuznetsova AA, Bashkarev PG (2017) Relativistic perturbation theory formalism to computing spectra and radiation characteristics: application to heavy elements. In: Uzunov DI (ed) Recent studies in perturbation theory, InTech, pp 131–150. (https://doi.org/10.5772/intechopen.69102)

  183. Glushkov AV (1992) Oscillator strengths of Cs and Rb-like ions. J Appl Spectrosc 56(1):5–9

    Article  Google Scholar 

  184. Khetselius OY, Glushkov AV, Gurskaya MY, Kuznetsova AA, Dubrovskaya YV, Serga IN, Vitavetskaya LA (2017) Computational modelling parity nonconservation and electroweak interaction effects in heavy atomic systems within the nuclear-relativistic many-body perturbation theory. J Phys Conf Ser 905:012029

    Google Scholar 

  185. Buyadzhi VV, Zaichko PA, Gurskaya MY, Kuznetsova AA, Ponomarenko EL, Ternovsky VB (2017) Relativistic theory of excitation and ionization of Rydberg atomic systems in a black-body radiation field. J Phys Conf Ser 810:012047

    Article  CAS  Google Scholar 

  186. Svinarenko AA, Khetselius OYu, Buyadzhi VV, Florko TA, Zaichko PA, Ponomarenko EL (2014) Spectroscopy of Rydberg atoms in a Black-body radiation field: relativistic theory of excitation and ionization. J Phys Conf Ser 548:012048

    Article  Google Scholar 

  187. Glushkov AV, Khetselius OY, Svinarenko AA, Buyadzhi VV (2015) Methods of computational mathematics and mathematical physics. P.1. TES, Odessa

    Google Scholar 

  188. Glushkov AV (2012) Methods of a chaos theory. Astroprint, Odessa

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Professors Olga Khetselius, Erkki Brändas, Jacek Karwowski, Ilya Kaplan, Jean Maruani, Boris Plakhutin and Andrey Svinarenko for useful discussions and comments and Dr Angeliki Athanasopoulou for the support. The author would like to thank the anonymous referees for useful comments too. The technical editorial assistance of Mr. Boopalan Renu and Mr. Muruga Prashanth are also very much acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Glushkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Glushkov, A.V. (2021). Auger Spectroscopy of Multielectron Atoms: Generalized Energy Formalism. In: Glushkov, A.V., Khetselius, O.Y., Maruani, J., Brändas, E. (eds) Advances in Methods and Applications of Quantum Systems in Chemistry, Physics, and Biology. Progress in Theoretical Chemistry and Physics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-68314-6_1

Download citation

Publish with us

Policies and ethics