Skip to main content
Log in

The effects of the vibrational excitation on H + ND(a1Δ, j0 = 2, v0 = 0,1,2) reaction

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Reactions of vibrationally excited ND (a1Δ, j0 = 2, v0 = 0,1,2) molecule with H atom have been carried out on the modified NH2 potential energy surface (PES) for the 2A′ excited state using Centrifugal Sudden approximation. The chemical reaction of ND (a1Δ) with H can proceed via the depletion ND + H → N + HD and the exchange pathways ND + H → NH + D. So, we present the time-dependent wave packet quantum scattering calculations of initial-state-resolved reaction probabilities, integral cross sections and initial state-selected reaction rate constants for exchange and depletion channels of the title reaction. For exchange reaction, it was found that vibrational excitation plays a very important role in the integral cross sections and rate constants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-W. Qu, H. Zhu, R. Schinke, L. Adam, W. Hack, J. Chem. Phys. 122, 204313 (2005)

    ADS  Google Scholar 

  2. L.A. Pederson, G.C. Schatz, T. Ho, T. Hollebeek, H. Rabitz, L.B. Harding, J. Chem. Phys. 110, 9091 (1999)

    ADS  Google Scholar 

  3. L.A. Pederson, G.C. Schatz, T. Hollebeek, T.-S. Ho, H. Rabitz, L.B. Harding, J. Phys. Chem. A 104, 2301 (2000)

    Google Scholar 

  4. T.-S. Ho, H. Rabitz, F.J. Aoiz, L. Banares, S.A. Vazquez, L.B. Harding, J. Chem. Phys. 119, 3063 (2003)

    ADS  Google Scholar 

  5. A.J.C. Varandas, L.A. Poveda, Theor. Chem. Acc. 116, 404 (2006)

    Google Scholar 

  6. A.J.C. Varandas, T.-S. Chu, K.-L. Han, P.J.S.B. Caridade, Chem. Phys. Lett. 421, 415 (2006)

    ADS  Google Scholar 

  7. B. Han, H. Yang, Y. Zheng, A.J.C. Varandas, Chem. Phys. Lett. 493, 225 (2010)

    ADS  Google Scholar 

  8. L. Adam, W. Hack, G.C. McBane, H. Zhu, Z.-W. Qu, R. Schinke, J. Chem. Phys. 126, 034304 (2007)

    ADS  Google Scholar 

  9. L. Adam, W. Hack, H. Zhu, Z.-W. Qu, R. Schinke, J. Chem. Phys. 122, 114301 (2005)

    ADS  Google Scholar 

  10. M. Alagia, N. Balucani, L. Cartechini, P. Cachavecchia, G.G. Volpi, L.A. Pederson, G.C. Schatz, G. Lendvay, L.B. Harding, T. Hollebeek, T.-S. Ho, H. Rabitz, J. Chem. Phys. 110, 8857 (1999)

    ADS  Google Scholar 

  11. N. Balucani, L. Cartechini, G. Capozza, E. Segoloni, P. Casavecchia, G.G. Volpi, F.J. Aoiz, L. Banares, P. Honvault, J. Launay, Phys. Rev. Lett. 89, 013201 (2002)

    ADS  Google Scholar 

  12. T. Takayanagi, J. Chem. Phys. 116, 2439 (2002)

    ADS  Google Scholar 

  13. E. Carmona-Novillo, T. Gonzalez-Lezana, O. Roncero, P. Honvault, J.-M. Launay, N. Bulut, F.J. Aoiz, L. Banares, J. Chem. Phys. 128, 014304 (2008)

    ADS  Google Scholar 

  14. F. Santaro, C. Petrongolo, G.C. Schatz, J. Phys. Chem. A 106, 8276 (2002)

    Google Scholar 

  15. S. Akpinar, P. Defazio, P. Gamallo, C. Petrongolo, J. Chem. Phys. 129, 174307 (2008)

    ADS  Google Scholar 

  16. P. Defazio, C. Petrongolo, G.C. McBane, L. Adam, W. Hack, S. Akpinar, R. Schine, J. Phys. Chem. A 113, 14458 (2009)

    Google Scholar 

  17. Z. Li, C. Xie, B. Jiang, D. Xie, L. Liu, Z. Sun, D.H. Zhang, H. Guo, J. Chem. Phys. 134, 134303 (2011)

    ADS  Google Scholar 

  18. S. Zhou, D. Xie, S.Y. Lin, H. Guo, J. Chem. Phys. 128, 224316 (2008)

    ADS  Google Scholar 

  19. P. Defazio, P. Gamllo, S. Akpinar, C. Petrongolo, Phys. Chem. Chem. Phys. 13, 8470 (2011)

    Google Scholar 

  20. S. Surucu, G. Tasmanoglu, S. Akpinar, Mol. Phys. 110, 1525 (2012)

    ADS  Google Scholar 

  21. S. Akpinar, S.S. Hekim, Chem. Phys. Lett. 578, 21 (2013)

    ADS  Google Scholar 

  22. R. Kosloff, J. Phys. Chem. 92, 2087 (1988)

    Google Scholar 

  23. M. Jorfi, P. Honvault, B. Bussery-Honvault, L. Banares, N. Bulut, Mol. Phys. 109, 543 (2011)

    ADS  Google Scholar 

  24. J. Yuan, D. Cheng, Z. Sun, M. Chen, Mol. Phys. 112, 2945 (2014)

    ADS  Google Scholar 

  25. S. Goswami, B. Bussery-Honvault, P. Honvault, S. Mahapatra, Mol. Phys. 115, 2658 (2017)

    ADS  Google Scholar 

  26. F. Gogtas, E. Karabulut, T. Tanaka, T. Takayanagi, R. Tutuk, Int. J. Quantum Chem. 112, 2348 (2012)

    Google Scholar 

  27. T.-S. Chu, R.F. Lu, K.L. Han, X.-N. Tang, H.F. Xu, C.Y. Ng, J. Chem. Phys. 122, 244322 (2005)

    ADS  Google Scholar 

  28. T.-S. Chu, K.-L. Han, A.J.C. Varandas, J. Phys. Chem. A 110, 1666 (2006)

    Google Scholar 

  29. T.-S. Chu, Y.B. Duan, S.P. Yuan, A.J.C. Varandas, Chem. Phys. Lett. 444, 351 (2007)

    ADS  Google Scholar 

  30. S.Y. Lin, H. Guo, Chem. Phys. Lett. 385, 193 (2004)

    ADS  Google Scholar 

  31. V. Manivannan, R. Padmanaban, Chem. Phys. 475, 83 (2016)

    Google Scholar 

  32. E. Aslan, N. Bulut, J.F. Castillo, L. Banares, O. Roncera, F.J. Aoiz, J. Phys. Chem. A 116, 132 (2011)

    Google Scholar 

  33. B. Poirier, Chem. Phys. 308, 305 (2005)

    Google Scholar 

  34. A.J.H.M. Meijer, E.M. Golfield, S.K. Gray, G.G. Balint-Kurti, Chem. Phys. Lett. 293, 270 (1998)

    ADS  Google Scholar 

  35. D. Koner, A.N. Panda, J. Phys. Chem. A. 117, 13070 (2013)

    Google Scholar 

  36. C. Xie, X. Liu, H. Guo, Chem. Phys. 515, 427 (2018)

    ADS  Google Scholar 

  37. Z. Zhu, H. Wang, X. Wang, Y. Shi, Mol. Phys. 116, 1108 (2018)

    ADS  Google Scholar 

  38. T.-S. Ho, H. Rabitz, S. Der Chao, R.T. Skodje, A.S. Zyubin, A.M. Mebel, J. Chem. Phys. 116, 4124 (2002)

    ADS  Google Scholar 

  39. A.J. Dobbyn, P.J. Knowles, Mol. Phys. 91, 1107 (1997)

    ADS  Google Scholar 

  40. S. Gao, J. Zhang, Y. Song, Q.-T. Meng, Eur. Phys. J. D 69, 111 (2015)

    ADS  Google Scholar 

  41. D. Li, Y. Wang, T. Wumaier, Eur. Phys. J. D 70, 173 (2016)

    ADS  Google Scholar 

  42. T. Xu, H. Wu, L.L. Zhang, X.-L. Wang, J. Zhao, Q.-T. Meng, Mol. Phys. 117, 311 (2018)

    ADS  Google Scholar 

  43. Z. Zhu, H. Wang, X. Wang, Mol. Phys. 117, 340 (2018)

    ADS  Google Scholar 

  44. A.N. Panda, N. Sathyamurthy, J. Chem. Phys. 122, 054304 (2005)

    ADS  Google Scholar 

  45. S.-J. Lv, P.Y. Zhang, K.L. Han, G.Z. He, J. Chem. Phys. 132, 014303 (2010)

    ADS  Google Scholar 

  46. J. Mayneris, J.D. Sierra, M. González, J. Chem. Phys. 128, 194307 (2008)

    ADS  Google Scholar 

  47. S.Y. Lin, Z. Sun, H. Guo, D.H. Zhang, P. Honvault, D. Xie, S.Y. Lee, J. Phys. Chem. A 112, 602 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seda Hekim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hekim, S., Akpinar, S. & Simsek, E. The effects of the vibrational excitation on H + ND(a1Δ, j0 = 2, v0 = 0,1,2) reaction. Eur. Phys. J. D 73, 254 (2019). https://doi.org/10.1140/epjd/e2019-100229-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100229-4

Keywords

Navigation