Skip to main content
Log in

Collapse and revival oscillation in Double Jaynes–Cummings model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We develop a systematic method of solving two noninteracting Jaynes–Cummings models by using the dressed state formalism in Hilbert space HAB(2⊗2). It is shown that such model, called Double Jaynes–Cummings model (D-JCM), can be exactly solved if we take the initial bare state as the linear superposition of two Bell states. The collapse and revival oscillation, which is the standard trait of typical Jaynes–Cummings model, can be recovered if we make measurement at each local sites. Some consequence of the entanglement-induced dressing is discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Math. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  2. E. Schrödinger, Math. Proc. Camb. Philos. Soc. 32, 446 (1936)

    Article  ADS  Google Scholar 

  3. C.H. Bennett, G. Brassard, Proc. IEEE Int. Conf. Comput. 175, 8 (1984)

    Google Scholar 

  4. R.L. Rivest, A. Shamir, L. Adleman, Commun. ACM 21, 120 (1978)

    Article  Google Scholar 

  5. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. M.A. Nielsen, I.L. Chuang, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000)

  7. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)

    Article  ADS  Google Scholar 

  8. J. Bell, Physics 1, 195 (1964)

    Article  Google Scholar 

  9. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  10. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  11. B. Hensen, et al., Phys. Rev. Lett. 526, 682 (2015)

    Google Scholar 

  12. L.K. Shalm, et al., Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  13. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  14. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  15. W.K. Wootters, Int. J. Quant. Inf. 4, 219 (2006)

    Article  Google Scholar 

  16. P. Rungta, et al., Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  18. M. Lewenstein, B. Kraus, P. Horodecki, J.I. Cirac, Phys. Rev. A 63, 044304 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Göhne, G. Toth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Yönac, T. Yu, J. Eberly, J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006)

    Article  Google Scholar 

  21. M. Yönac, T. Yu, J.H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 40, S45 (2007)

    Article  ADS  Google Scholar 

  22. T. Yu, J.H. Eberly, Science 30, 598 (2009)

    Article  ADS  Google Scholar 

  23. M. Yönac, J.H. Eberly, Opt. Lett. 33, 270 (2008)

    Article  ADS  Google Scholar 

  24. V.S. Vladimir, S. Malinovsky, R.S. Ignacio, Phys. Rev. Lett. 96, 050502:1 (2006)

    Google Scholar 

  25. P. Saha, A. Majumder, S. Singh, N. Nayak, Int. J. Quant. Inf. 8, 1397 (2010)

    Article  Google Scholar 

  26. C.E.A. Jarvis, et al., J. Opt. Soc. Am. B 27, A164 (2010)

    Article  Google Scholar 

  27. X. Jin-Shi, et al., Phys. Rev. Lett. 104, 100502:1 (2010)

    Google Scholar 

  28. I. Bahari, T.P. Spiller, S. Dooley, A. Hayes, F. McCrossan, Int. J. Quant. Inf. 16, 1850017 (2018)

    Article  Google Scholar 

  29. X.Q. Yan, B.Y. Zhang, Ann. Phys. 349, 350 (2014)

    Article  ADS  Google Scholar 

  30. I. Sainz, G. Björk, Phys. Rev. A 76, 042313 (2007)

    Article  ADS  Google Scholar 

  31. F. Han, Chin. Sci. Bull. 55, 1758 (2010)

    Article  Google Scholar 

  32. A. Joshi, M. Xiao, Phys. Lett. A 317, 370 (2003)

    Article  ADS  Google Scholar 

  33. E. Paspalakis, P.L. Knight, J. Phys. B: At. Mol. Opt. Phys. 4, S372 (1999)

    Google Scholar 

  34. E. Paspalakis, N.J. Kylstra, P.L. Knight, Phys. Rev. A 65, 053808 (2002)

    Article  ADS  Google Scholar 

  35. B.S. Ham, P.R. Hemmer, Phys. Rev. Lett. 84, 4080 (2000)

    Article  ADS  Google Scholar 

  36. S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  37. M.R. Nath, T.K. Dey, S. Sen, G. Gangopadhyay, Pramana: J. Phys. 77, 141 (2008)

    Article  ADS  Google Scholar 

  38. S. Sen, M.R. Nath, T.K. Dey, G. Gangopadhyay, Ann. Phys. 327, 224 (2012)

    Article  ADS  Google Scholar 

  39. S. Sen, H. Ahmed, J. Math. Phys. 55, 122105 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  40. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  41. S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997)

  42. S.K. Bose, E.A. Pascos, Nucl. Phys. B169, 384 (1980)

    Article  ADS  Google Scholar 

  43. S. Sen, T.K. Dey, M.R. Nath, G. Gangopadhyay, J. Mod. Opt. 62, 166 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Sen.

Additional information

Contribution to the Topical Issue “Quantum Correlations”, edited by Marco Genovese, Vahid Karimipour, Sergei Kulik, and Olivier Pfister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Dey, T.K. & Nath, M.R. Collapse and revival oscillation in Double Jaynes–Cummings model. Eur. Phys. J. D 73, 3 (2019). https://doi.org/10.1140/epjd/e2018-90372-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90372-7

Navigation