Skip to main content
Log in

Effect of field quantization on Rabi oscillation of equidistant cascade four-level system

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We have exactly solved a model of equidistant cascade four-level system interacting with a single-mode radiation field both semiclassically and quantum mechanically by exploiting its similarity with Jaynes-Cummings model. For the classical field, it is shown that the Rabi oscillation of the system initially in the first level (second level) is similar to that of the system when it is initially in the fourth level (third level). We then proceed to solve the quantized version of the model where the dressed state is constructed using a six-parameter four-dimensional matrix and show that the symmetry exhibited in the Rabi oscillation of the system for the semiclassical model is completely destroyed on the quantization of the cavity field. Finally, we have studied the collapse and revival of the system for the cavity field-mode in a coherent state to discuss the restoration of symmetry and its implication is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W H Louisell, Quantum statistical properties of radiation (Wiley, New York, 1973) p. 318

    Google Scholar 

  2. E T Jaynes and F W Cummings, Proc. IEEE 51, 89 (1963)

    Google Scholar 

  3. R G Brewer and E L Hahn, Phys. Rev. A11, 1641 (1975)

    ADS  Google Scholar 

  4. P W Milloni and J H Eberly, J. Chem. Phys. 68, 1602 (1978)

    Article  ADS  Google Scholar 

  5. E M Belanov and I A Poluktov, JETP 29, 758 (1969)

    ADS  Google Scholar 

  6. D Grischkowsky, M M T Loy and P F Liao, Phys. Rev. A12, 2514 (1975), and references therein

    ADS  Google Scholar 

  7. B Sobolewska, Opt. Commun. 19, 185 (1976)

    Article  ADS  Google Scholar 

  8. C Cohen-Tannoudji and S Raynaud, J. Phys. B10, 365 (1977)

    ADS  Google Scholar 

  9. R M Whitley and C R Stroud Jr, Phys. Rev. A14, 1498 (1976)

    ADS  Google Scholar 

  10. E Arimondo, Coherent population trapping in laser spectroscopy, in Prog. in optics XXXV edited by E Wolf (Elsevier Science, Amsterdam, 1996) p. 257

    Google Scholar 

  11. C M Bowden and C C Sung, Phys. Rev. A18, 1588 (1978); A20, 378(E)

    ADS  Google Scholar 

  12. T W Mossberg, A Flusberg, R Kachru and S R Hartman, Phys. Rev. Lett. 39, 1523 (1984)

    Article  ADS  Google Scholar 

  13. T W Mossberg and S R Hartman, Phys. Rev. 39, 1271 (1981)

    Google Scholar 

  14. K Bergman, H Theuer and B W Shore, Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  15. R J Cook and H J Kimble, Phys. Rev. Lett. 54, 1023 (1985)

    Article  ADS  Google Scholar 

  16. R J Cook, Phys. Scr. T21, 49 (1988)

    Article  ADS  Google Scholar 

  17. B Misra and E C G Sudarshan, J. Math. Phys. 18, 756 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  18. C B Chiu, E C G Sudarshan and B Misra, Phys. Rev. D16, 520 (1977)

    ADS  MathSciNet  Google Scholar 

  19. R J Cook, Phys. Scr. T21, 49 (1988)

    Article  ADS  Google Scholar 

  20. F T Hioe and J H Eberly, Phys. Rev. Lett. 47, 838 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  21. A Dulcic, Phys. Rev. A30, 2462 (1984)

    ADS  Google Scholar 

  22. J C Diels and S Besnainou, J. Chem. Phys. 85, 6347 (1986)

    Article  ADS  Google Scholar 

  23. A V Smith, J. Opt. Soc. Am. B9, 1543 (1992)

    ADS  Google Scholar 

  24. B W Shore, The theory of coherent atomic excitation (Wiley, New York, 1990)

    Google Scholar 

  25. L Allen and J H Eberly, Optical resonance and two-level atoms (Wiley, New York, 1975)

    Google Scholar 

  26. H Schmidt and A Imamoglu, Opt. Lett. 21, 1936 (1996)

    Article  ADS  Google Scholar 

  27. S E Harris and Y Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  28. M D Lukin, S F Yelin, M Fleischhauer and M O Scully, Phys. Rev. A60, 3225 (1999)

    ADS  Google Scholar 

  29. E A Korsunsky and D V Kosachiov, Phys. Rev. A60, 4996 (1999)

    ADS  Google Scholar 

  30. S F Yelin and P R Hemmer, quant-ph/0012136

  31. E Paspalakis and P L Knight, J. Mod. Opt. 49, 87 (2002)

    Article  ADS  Google Scholar 

  32. E Paspalakis and P L Knight, Phys. Rev. A66, 025802 (2002)

    Google Scholar 

  33. D McGloin, D J Fulton and M H Dunn, Opt. Commun. 190, 221 (2001)

    Article  ADS  Google Scholar 

  34. E A Korsunsky, N Leinfellner, A Huss, S Baluschev and L Windholz, Phys. Rev. A59, 2302 (1999)

    ADS  Google Scholar 

  35. M Yan, E G Rickey and Y Zhu, Phys. Rev. A64, 041801 (2001)

  36. Y C Chen, Y A Liao, H Y Chiu, J J Su and I A Yu, Phys. Rev. A64, 053806 (2001)

  37. S D Badger, I G Hughes and C S Adams, J. Phys. B34, L749 (2001)

    ADS  Google Scholar 

  38. R G Unanyan, B W Shore and K Bergmann, Phys. Rev. A59, 2910 (1999)

    ADS  Google Scholar 

  39. Z Kis and F Renzoni, Phys. Rev. A65, 032318 (2002)

  40. B S Ham and P R Hemmer, Phys. Rev. Lett. 84, 4080 (2000)

    Article  ADS  Google Scholar 

  41. G S Agarwal and W Harshawardhan, Phys. Rev. Lett. 77, 1039 (1996)

    Article  ADS  Google Scholar 

  42. A R P Rau, G Selvaraj and D Uskov, Phys. Rev. A71, 062316 (2005)

  43. R J Cook and B W Shore, Phys. Rev. A20, 539 (1979)

    ADS  Google Scholar 

  44. N N Bogolubov Jr, F L Kien and A S Shumovsky, Phys. Lett. A107, 173 (1985)

    ADS  Google Scholar 

  45. M Kozierowski, J. Phys. B: At. Mol. Phys. 19, L535 (1986)

    Article  ADS  Google Scholar 

  46. B Buck and C V Sukumar, J. Phys. A17, 877 (1984)

    ADS  MathSciNet  Google Scholar 

  47. F Li, X Li, D L Lin and T F George, Phys. Rev. A40, 5129 (1989), and references therein

    ADS  Google Scholar 

  48. K Fujii, K Higashida, R Kato, T Y Suzuki and Y Wada, quant-ph/0410003 v2

  49. K Fujii, K Higashida, R Kato, T Y Suzuki and Y Wada, quant-ph/0409068

  50. Z D Liu, S Y Zhu and X S Li, J Mod. Opt. 35, 833 (1988)

    Article  ADS  Google Scholar 

  51. K I Osmana and H A Ashi, Physica A310, 165 (2002)

    ADS  Google Scholar 

  52. M R Nath, S Sen and G Gangopadhyay, Pramana — J. Phys. 61, 1089 (2003)

    Article  ADS  Google Scholar 

  53. S K Bose and E A Pascos, Nucl. Phys. B169, 384 (1980); We have corrected the typos of this reference

    Article  ADS  Google Scholar 

  54. M R Nath, S Sen, G Gangopadhyay and A K Sen, Communicated

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Gangopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, M.R., Dey, T.K., Sen, S. et al. Effect of field quantization on Rabi oscillation of equidistant cascade four-level system. Pramana - J Phys 70, 141–152 (2008). https://doi.org/10.1007/s12043-008-0012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0012-5

Keywords

PACS Nos

Navigation