Critical free electron densities and temperatures for spectral lines in dense plasmas

Abstract

The ionization potentials of bound electrons decrease when an atom is immersed in plasma. The calculation or measurement of the ionization potential depression (IPD) is used to estimate the influence of the plasma environments on atomic structures. This work reports a simple method for the estimation of the effects of IPD on H- and He-like ions in dense plasmas. The method predicts the critical free electron densities and temperatures after which spectral lines of H- and He-like ions disappear. The critical free electron density and temperature are the free electron density and temperature that correspond to the classical turning point radius of a bound electron in the highest occupied orbital of the two atomic states for a transition that is equal to the ion-sphere radius. The obtained critical free electron densities are in better agreement with the ORION experimental results than those obtain using other available theories. The present method may thus provide a more accurate estimation of the effects of IPD in dense plasmas and may be extended to other multi-electron ions such as Li- and Be-like ions.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S.K. Son, R. Thiele, Z. Jurek, B. Ziaja, R. Santra, Phys. Rev. X 4, 031004 (2014)

    Google Scholar 

  2. 2.

    E.I. Moses, R.N. Boyd, B.A. Remington, C.J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    P. Emma et al., Nat. Photonics 4, 641 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    K.L. Ishikawa, K. Ueda, Phys. Rev. Lett. 108, 033003 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    S.X. Hu, Phys. Rev. Lett. 119, 065001 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    S.M. Vinko et al., Nature 482, 59 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    O. Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    D.J. Hoarty et al., Phys. Rev. Lett. 110, 265003 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    J.C. Stewart Jr., K.D. Pyatt, Astrophys. J. 144, 1203 (1966)

    ADS  Article  Google Scholar 

  10. 10.

    G. Ecker, W. Kröll, Phys. Fluids 6, 62 (1963)

    ADS  Article  Google Scholar 

  11. 11.

    O. Ciricosta et al., Nat. Commun. 7, 11713 (2016)

    ADS  Article  Google Scholar 

  12. 12.

    C.A. Iglesias, P.A. Sterne, High Energy Density Phys. 9, 103 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    C.A. Iglesias, High Energy Density Physics 12, 5 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    A. Calisti, S. Ferri, B. Talin, J. Phys. B: At. Mol. Opt. Phys. 48, 224003 (2015)

    ADS  Article  Google Scholar 

  15. 15.

    T.R. Preston, S.M. Vinko, O. Ciricosta, H.K. Chung, R.W. Lee, J.S. Wark, High Energy Density Physics 9, 258 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    S. Bhattacharyya, J.K. Saha, T.K. Mukherjee, Phys. Rev. A 91, 042515 (2015)

    ADS  Article  Google Scholar 

  17. 17.

    B.J. Crowley, High Energy Density Phys. 13, 84 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    ADS  Article  Google Scholar 

  19. 19.

    I.P. Grant, Comput. Phys. Commun. 84, 59 (1994)

    ADS  Article  Google Scholar 

  20. 20.

    X. Li, Z. Xu, F.B. Rosmej, J. Phys. B: At. Mol. Opt. Phys. 39, 3373 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    Y. Li, J.H. Wu, Y. Hou, J.M. Yuan, J. Phys. B: At. Mol. Opt. Phys. 41, 145002 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    J. Yuan, Phys. Rev. E 66, 047401 (2002)

    ADS  Article  Google Scholar 

  23. 23.

    P. Jönsson, G. Gaigalas, J. Bieron, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 184, 2197 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    NIST-Database, https://doi.org/www.nist.gov/pml/atomic-spectra-database

  26. 26.

    A.N. Sil, J. Anton, S. Fritzsche, P.K. Mukherjee, Eur. Phys. J. D 55, 645 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    M. Das, B.K. Sahoo, S. Pal, Phy. Rev. A 93, 052513 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    D. Salzmann, H. Szichman, Phys. Rev. A 35, 807 (1987)

    ADS  Article  Google Scholar 

  29. 29.

    B. Saha, S. Fritzsche, J. Phys. B: At. Mol. Opt. Phys. 40, 259 (2007)

    ADS  Article  Google Scholar 

  30. 30.

    Y. Li, J. Wu, Y. Hou, J. Yuan, J. Phys. B: At. Mol. Opt. Phys. 42, 235701 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    G. Massacriert, J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 23, 24598 (1990)

    Google Scholar 

  32. 32.

    M. Belkhiri, C.J. Fontes, J. Phys. B: At. Mol. Opt. Phys. 49, 175002 (2016)

    ADS  Article  Google Scholar 

  33. 33.

    M. Belkhiri, M. Poirier, High Energy Density Phys. 9, 609 (2013)

    ADS  Article  Google Scholar 

  34. 34.

    B.J. Crowley, Phy. Rev. A 41, 2179 (1990)

    ADS  Article  Google Scholar 

  35. 35.

    X.F. Li, G. Jiang, H.B. Wang, Q. Sun, Phys. Scr. 92, 075401 (2017)

    ADS  Article  Google Scholar 

  36. 36.

    X.F. Li, G. Jiang, H.B. Wang, Q. Sun, Chin. Phys. B 26, 013101 (2017)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, X., Deng, P. et al. Critical free electron densities and temperatures for spectral lines in dense plasmas. Eur. Phys. J. D 72, 176 (2018). https://doi.org/10.1140/epjd/e2018-90039-5

Download citation

Keywords

  • Atomic Physics