Skip to main content
Log in

Critical free electron densities and temperatures for spectral lines in dense plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The ionization potentials of bound electrons decrease when an atom is immersed in plasma. The calculation or measurement of the ionization potential depression (IPD) is used to estimate the influence of the plasma environments on atomic structures. This work reports a simple method for the estimation of the effects of IPD on H- and He-like ions in dense plasmas. The method predicts the critical free electron densities and temperatures after which spectral lines of H- and He-like ions disappear. The critical free electron density and temperature are the free electron density and temperature that correspond to the classical turning point radius of a bound electron in the highest occupied orbital of the two atomic states for a transition that is equal to the ion-sphere radius. The obtained critical free electron densities are in better agreement with the ORION experimental results than those obtain using other available theories. The present method may thus provide a more accurate estimation of the effects of IPD in dense plasmas and may be extended to other multi-electron ions such as Li- and Be-like ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Son, R. Thiele, Z. Jurek, B. Ziaja, R. Santra, Phys. Rev. X 4, 031004 (2014)

    Google Scholar 

  2. E.I. Moses, R.N. Boyd, B.A. Remington, C.J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)

    Article  ADS  Google Scholar 

  3. P. Emma et al., Nat. Photonics 4, 641 (2010)

    Article  ADS  Google Scholar 

  4. K.L. Ishikawa, K. Ueda, Phys. Rev. Lett. 108, 033003 (2012)

    Article  ADS  Google Scholar 

  5. S.X. Hu, Phys. Rev. Lett. 119, 065001 (2017)

    Article  ADS  Google Scholar 

  6. S.M. Vinko et al., Nature 482, 59 (2012)

    Article  ADS  Google Scholar 

  7. O. Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012)

    Article  ADS  Google Scholar 

  8. D.J. Hoarty et al., Phys. Rev. Lett. 110, 265003 (2013)

    Article  ADS  Google Scholar 

  9. J.C. Stewart Jr., K.D. Pyatt, Astrophys. J. 144, 1203 (1966)

    Article  ADS  Google Scholar 

  10. G. Ecker, W. Kröll, Phys. Fluids 6, 62 (1963)

    Article  ADS  Google Scholar 

  11. O. Ciricosta et al., Nat. Commun. 7, 11713 (2016)

    Article  ADS  Google Scholar 

  12. C.A. Iglesias, P.A. Sterne, High Energy Density Phys. 9, 103 (2013)

    Article  ADS  Google Scholar 

  13. C.A. Iglesias, High Energy Density Physics 12, 5 (2014)

    Article  ADS  Google Scholar 

  14. A. Calisti, S. Ferri, B. Talin, J. Phys. B: At. Mol. Opt. Phys. 48, 224003 (2015)

    Article  ADS  Google Scholar 

  15. T.R. Preston, S.M. Vinko, O. Ciricosta, H.K. Chung, R.W. Lee, J.S. Wark, High Energy Density Physics 9, 258 (2013)

    Article  ADS  Google Scholar 

  16. S. Bhattacharyya, J.K. Saha, T.K. Mukherjee, Phys. Rev. A 91, 042515 (2015)

    Article  ADS  Google Scholar 

  17. B.J. Crowley, High Energy Density Phys. 13, 84 (2014)

    Article  ADS  Google Scholar 

  18. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  ADS  Google Scholar 

  19. I.P. Grant, Comput. Phys. Commun. 84, 59 (1994)

    Article  ADS  Google Scholar 

  20. X. Li, Z. Xu, F.B. Rosmej, J. Phys. B: At. Mol. Opt. Phys. 39, 3373 (2006)

    Article  ADS  Google Scholar 

  21. Y. Li, J.H. Wu, Y. Hou, J.M. Yuan, J. Phys. B: At. Mol. Opt. Phys. 41, 145002 (2008)

    Article  ADS  Google Scholar 

  22. J. Yuan, Phys. Rev. E 66, 047401 (2002)

    Article  ADS  Google Scholar 

  23. P. Jönsson, G. Gaigalas, J. Bieron, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 184, 2197 (2013)

    Article  ADS  Google Scholar 

  24. P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177, 597 (2007)

    Article  ADS  Google Scholar 

  25. NIST-Database, https://doi.org/www.nist.gov/pml/atomic-spectra-database

  26. A.N. Sil, J. Anton, S. Fritzsche, P.K. Mukherjee, Eur. Phys. J. D 55, 645 (2009)

    Article  ADS  Google Scholar 

  27. M. Das, B.K. Sahoo, S. Pal, Phy. Rev. A 93, 052513 (2016)

    Article  ADS  Google Scholar 

  28. D. Salzmann, H. Szichman, Phys. Rev. A 35, 807 (1987)

    Article  ADS  Google Scholar 

  29. B. Saha, S. Fritzsche, J. Phys. B: At. Mol. Opt. Phys. 40, 259 (2007)

    Article  ADS  Google Scholar 

  30. Y. Li, J. Wu, Y. Hou, J. Yuan, J. Phys. B: At. Mol. Opt. Phys. 42, 235701 (2009)

    Article  ADS  Google Scholar 

  31. G. Massacriert, J. Dubau, J. Phys. B: At. Mol. Opt. Phys. 23, 24598 (1990)

    Google Scholar 

  32. M. Belkhiri, C.J. Fontes, J. Phys. B: At. Mol. Opt. Phys. 49, 175002 (2016)

    Article  ADS  Google Scholar 

  33. M. Belkhiri, M. Poirier, High Energy Density Phys. 9, 609 (2013)

    Article  ADS  Google Scholar 

  34. B.J. Crowley, Phy. Rev. A 41, 2179 (1990)

    Article  ADS  Google Scholar 

  35. X.F. Li, G. Jiang, H.B. Wang, Q. Sun, Phys. Scr. 92, 075401 (2017)

    Article  ADS  Google Scholar 

  36. X.F. Li, G. Jiang, H.B. Wang, Q. Sun, Chin. Phys. B 26, 013101 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, X., Deng, P. et al. Critical free electron densities and temperatures for spectral lines in dense plasmas. Eur. Phys. J. D 72, 176 (2018). https://doi.org/10.1140/epjd/e2018-90039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-90039-5

Keywords

Navigation