Skip to main content
Log in

Introducing time-dependent molecular fields: a new derivation of the wave equations

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baer, J. Phys. Chem. A 107, 4724 (2003)

    Article  Google Scholar 

  2. R. Baer, D.J. Kouri, M. Baer, D.K. Hoffman, J. Chem. Phys. 119, 6998 (2003)

    Article  ADS  Google Scholar 

  3. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.3.1

  4. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.3.2

  5. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 1.1.2

  6. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 1.1.3

  7. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 6.3.2.2

  8. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.1

  9. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 2.3.2.3

  10. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 3.2.2

  11. M. Baer, Beyond Born-Oppenheimer: electronic non-adiabatic coupling terms and conical intersections (Wiley & Sons Inc., Hoboken, NJ, 2006), Sect. 5.1

  12. M. Baer, J. Phys. Chem. A 110, 6571 (2006)

    Article  Google Scholar 

  13. B. Sarkar, S. Adhikari, M. Baer, J. Chem. Phys. 127, 014301 (2007)

    Article  ADS  Google Scholar 

  14. B. Sarkar, S. Adhikari, M. Baer, J. Chem. Phys. 127, 014302 (2007)

    Article  ADS  Google Scholar 

  15. A.K. Paul, S. Adhikari, M. Baer, J. Chem. Phys. 132, 034303 (2010)

    Article  ADS  Google Scholar 

  16. A.K. Paul, S. Adhikari, M. Baer, Phys. Rep. 496, 79 (2010)

    ADS  Google Scholar 

  17. M. Baer, Int. J. Quantum Chem. 114, 1645 (2014)

    Article  Google Scholar 

  18. M. Baer, B. Mukherjee, S. Mukherjee, S. Adhikari, Mol. Phys. 114, 227 (2016)

    Article  ADS  Google Scholar 

  19. M. Born, K. Huang, Dynamical theory of crystal lattices (Oxford University, New York, 1954)

  20. M. Born, J.R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927)

    Article  ADS  Google Scholar 

  21. M. Baer, Chem. Phys. Lett. 35, 112 (1975)

    Article  ADS  Google Scholar 

  22. M. Baer, Phys. Rep. 358, 75 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Baer, Chem. Phys. Lett. 360, 243 (2002)

    Article  ADS  Google Scholar 

  24. J.D. Jackson, Classical electrodynamics, 2nd edn. (John Wiley & Sons Inc., New York, 1998), Chapter 6

  25. S. Hu, G.J. Halász, Á. Vibók, A.M. Mebel, M. Baer, Chem. Phys. Lett. 367, 177 (2003)

    Article  ADS  Google Scholar 

  26. A. Vibok, G.J. Halasz, A.M. Mebel, S. Hu, M. Baer, Int. J. Quantum Chem. 99, 594 (2004)

    Article  Google Scholar 

  27. T. Vertesi, Á. Vibók, G.J. Halász, M. Baer, J. Chem. Phys. 121, 4000 (2004)

    Article  ADS  Google Scholar 

  28. H.A. Jahn, E. Teller, Proc. R. Soc. Lond. Ser. A 161, 220 (1937)

    Article  ADS  Google Scholar 

  29. W.D. Hobey, A.D. McLachlan, J. Chem. Phys. 33, 1695 (1960)

    Article  ADS  Google Scholar 

  30. H.C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961)

    ADS  Google Scholar 

  31. F.T. Smith, Phys. Rev. 179, 111 (1969)

    Article  ADS  Google Scholar 

  32. E. Brandas, P. Froelich, Int. J. Quantum Chem. 13, 619 (1978)

    Article  Google Scholar 

  33. F. Rebentrost, in Theoretical chemistry: advances and perspectives, edited by D. Henderson, H. Eyring (Academic Press, 1981), Vol. II, p. 32

  34. T.G. Heil, S.E. Butler, A. Dalgarno, Phys. Rev. A 23, 1100 (1981)

    Article  ADS  Google Scholar 

  35. C.A. Mead, D.G. Truhlar, J. Chem. Phys. 77, 6090 (1982)

    Article  ADS  Google Scholar 

  36. C.A. Mead, J. Chem. Phys. 78, 807 (1983)

    Article  ADS  Google Scholar 

  37. D. Dehareug-Dao, X. Chapuisat, J.C. Lorquet, C. Galloy, G. Raseev, J. Chem. Phys. 78, 1246 (1983)

    Article  ADS  Google Scholar 

  38. H.J. Werner, B. Follmeg, M.H. Alexander, J. Chem. Phys. 89, 3139 (1988)

    Article  ADS  Google Scholar 

  39. C. Petrongolo, G. Hirsch, R. Buenker, Mol. Phys. 70, 825 (1990)

    Article  ADS  Google Scholar 

  40. C. Petrongolo, G. Hirsch, R. Buenker, Mol. Phys. 70, 835 (1990)

    Article  ADS  Google Scholar 

  41. M. Baer, R. Englman, Mol. Phys. 75, 283 (1992)

    Article  ADS  Google Scholar 

  42. M. Baer, R. Englman, Chem. Phys. Lett. 265, 105 (1997)

    Article  ADS  Google Scholar 

  43. D.R. Yarkony, J. Chem. Phys. 105, 10456 (1996)

    Article  ADS  Google Scholar 

  44. R.G. Sadygov, D.R. Yarkony, J. Chem. Phys. 109, 20 (1998)

    Article  ADS  Google Scholar 

  45. T. Pacher, L.S. Cederbaum, H. Köppel, Adv. Chem. Phys. 84, 293 (1993)

    Google Scholar 

  46. G.J. Tawa, S.L. Mielke, D.G. Truhlar, D.W. Schwenke, J. Chem. Phys. 100, 5751 (1994)

    Article  ADS  Google Scholar 

  47. R. Baer, D.M. Charutz, R. Kosloff, M. Baer, J. Chem. Phys. 105, 9141 (1996)

    Article  ADS  Google Scholar 

  48. D.M. Charutz, R. Baer, M. Baer, Chem. Phys. Lett. 265, 629 (1997)

    Article  ADS  Google Scholar 

  49. S. Adhikari, G.D. Billing, J. Chem. Phys. 111, 40 (1999)

    Article  ADS  Google Scholar 

  50. A. Alijah, E.E. Nikitin, Mol. Phys. 96, 1399 (1999)

    Article  ADS  Google Scholar 

  51. M. Baer, S.H. Lin, A. Alijah, S. Adhikari, G.D. Billing, Phys. Rev. A 62, 032506 (2000)

    Article  ADS  Google Scholar 

  52. S. Adhikari, G.D. Billing, A. Alijah, S.H. Lin, M. Baer, Phys. Rev. A 62, 032507 (2000)

    Article  ADS  Google Scholar 

  53. L.F. Errea, A. Macias, L. Mendez, I. Rabadan, A. Riera, A. Rojas, P. Sanz, Phys. Rev. A 63, 062713 (2001)

    Article  ADS  Google Scholar 

  54. E.S. Kryachko, D.R. Yarkony, Int. J. Quant. Chem. 76, 235 (2000)

    Article  Google Scholar 

  55. R. Englman, A. Yahalom, Adv. Chem. Phys. 124, 197 (2002)

    Google Scholar 

  56. I.B. Bersuker, Chem. Rev. 101, 1067 (2001)

    Article  Google Scholar 

  57. A. Kuppermann, R. Abrol, Adv. Chem. Phys. 124, 283 (2002)

    Google Scholar 

  58. Conical intersections: electronic structure, dynamics and spectroscopy, edited by W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), in particularly see: D.R. Yarkony, p. 41

  59. Conical intersections: electronic structure, dynamics and spectroscopy, edited by W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), in particularly see: H. Köppel, p. 175

  60. Conical intersections: electronic structure, dynamics and spectroscopy, edited by W. Domcke, D.R. Yarkony, H. Köppel (World Scientific, Singapore, 2004), in particularly see: R. de Vivie-Riedle, A. Hofmann, p. 829

  61. J. Avery, M. Baer, D.G. Billing, Mol. Phys. 100, 1011 (2002)

    Article  ADS  Google Scholar 

  62. E.S. Kryachko, Adv. Quant. Chem. 44, 119 (2003)

    Article  Google Scholar 

  63. M.B. Sevryuk, L.Y. Rusin, S. Cavalli, V. Aquilanti, J. Phys. Chem. A 108, 8731 (2004)

    Article  Google Scholar 

  64. P. Barragan, L.F. Errea, A. Macias, L. Mendez, A. Riera, J.M. Lucas, A. Aguilar, J. Chem. Phys. 121, 11629 (2004)

    Article  ADS  Google Scholar 

  65. M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  Google Scholar 

  66. D.C. Clary, Science 309, 1227 (2005)

    Article  MathSciNet  Google Scholar 

  67. M. Baer, T. Vertsi, G.J. Halász, Á. Vibok, S. Suhai, Faraday Discuss. 127, 337 (2004)

    Article  ADS  Google Scholar 

  68. T. Vertesi, E. Bene, A. Vibok, G.J. Halasz, M. Baer, J. Phys. Chem. A 109, 3476 (2005)

    Article  Google Scholar 

  69. T. Vértesi, A. Vibók, G.J. Halász, M. Baer, J. Phys. B: At. Mol. Opt. Phys. 37, 4803 (2004)

    Article  Google Scholar 

  70. A. Vibok, G.J. Halasz, T. Vertesi, T. Suhai, M. Baer, J.P. Toennies, J. Chem. Phys. 119, 6588 (2003)

    Article  ADS  Google Scholar 

  71. C.R. Evenhuis, X. Lin, D.H. Zhang, D.R. Yarkony, M.A. Collins, J. Chem. Phys. 123, 134110 (2005)

    Article  ADS  Google Scholar 

  72. O. Godsi, C.R. Evenhuis, M.A. Collins, J. Chem. Phys. 125, 104105 (2006)

    Article  ADS  Google Scholar 

  73. O. Godsi, M.A. Collins, U. Peshkin, J. Chem. Phys. 132, 124106 (2010)

    Article  ADS  Google Scholar 

  74. G.J. Halász, Á. Vibók, R. Baer, M. Baer, J. Chem. Phys. 125, 094102 (2006)

    Article  ADS  Google Scholar 

  75. G.J. Halász, Á. Vibók, D.K. Hoffman, D.J. Kouri, M. Baer, J. Chem. Phys. 126, 154309 (2007)

    Article  ADS  Google Scholar 

  76. G.J. Halász, Á. Vibók, R. Baer, M. Baer, J. Phys. A: Math. Theor. 40, F267 (2007)

    Article  ADS  Google Scholar 

  77. Q. Wu, T. Van Voorhis, J. Phys. Chem. A 110, 9212 (2006)

    Article  Google Scholar 

  78. C. Levi, G.J. Halasz, A. Vibok, I. Bar, Y. Zeiri, R. Kosloff, M. Baer, J. Chem. Phys. 128, 244302 (2008)

    Article  ADS  Google Scholar 

  79. C. Levy, G.J. Halász, Á. Vibok, I. Bar, Y. Zeiri, R. Kosloff, M. Baer, Int. J. Quant. Chem. 109, 2482 (2009)

    Article  ADS  Google Scholar 

  80. J. Larson, E. Sjoqvist, Phys. Rev. A 79, 043627 (2009)

    Article  ADS  Google Scholar 

  81. A. Das, D. Mukhopadhyay, S. Adhikari, M. Baer, J. Chem. Phys. 133, 084107 (2010)

    Article  ADS  Google Scholar 

  82. J.E. Subotnik, R.J. Cave, R.P. Steele, N. Shenvi, J. Chem. Phys. 130, 234102 (2009)

    Article  ADS  Google Scholar 

  83. S. Hammes-Schiffer, J. Phys. Chem. Lett. 2, 1410 (2011)

    Article  Google Scholar 

  84. W. Skomorowski, F. Pawlowski, T. Korona, R. Moszinski, P.S. Zuckowski, J.M. Hutson, J. Chem. Phys. 134, 114109 (2011)

    Article  ADS  Google Scholar 

  85. A. Yahalom, Advances in classical field theory (Bentham eBooks, 2011), Chapter 9

  86. S. Al-Jabour, M. Baer, O. Deeb, M. Liebscher, J. Manz, X. Xu, S. Zilberg, J. Phys. Chem. A 114, 2991 (2010)

    Article  Google Scholar 

  87. T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, Q. Wu, Annu. Rev. Phys. Chem. 61, 149 (2010)

    Article  Google Scholar 

  88. M.S. Kaczmarski, Y. Ma, M. Rohlfing, Phys. Rev. B 81, 115433 (2010)

    Article  ADS  Google Scholar 

  89. R. Baer, Phys. Rev. Lett. 104, 073001 (2010)

    Article  ADS  Google Scholar 

  90. I. Ryb, R. Baer, J. Chem. Phys. 121, 10370 (2004)

    Article  ADS  Google Scholar 

  91. A. Alijah, J. Fremont, V.T. Tyuterev, Phys. Rev. A 92, 012704 (2015)

    Article  ADS  Google Scholar 

  92. A.K. Paul, S. Ray, D. Mukhopadhyay, S. Adhikari, J. Chem. Phys. 135, 034107 (2011)

    Article  ADS  Google Scholar 

  93. M.J. Jamieson, A.S.C. Cheung, H. Ouerdane, Eur. Phys. J. D 56, 181 (2010)

    Article  ADS  Google Scholar 

  94. C. Hu, O.J. Sugino, K. Watanebe, J. Chem. Phys. 135, 074101 (2011)

    Article  ADS  Google Scholar 

  95. T. Yonehara, K. Hanasaki, K. Takatsuka, Chem. Rev. 112, 499 (2012)

    Article  Google Scholar 

  96. R. Englman, T. Vertesi, J. Phys. B: At. Mol. Opt. Phys. 38, 2443 (2005)

    Article  ADS  Google Scholar 

  97. T. Vertesi, R. Englman, J. Phys. B: At. Mol. Opt. Phys. 41, 025102 (2008)

    Article  ADS  Google Scholar 

  98. E. Bene, T. Vertesi, R. Englman, J. Chem. Phys. 135, 084101 (2011)

    Article  ADS  Google Scholar 

  99. R. Englman, J. Chem. Phys. 144, 024103 (2016)

    Article  ADS  Google Scholar 

  100. L.S. Cederbaum, J. Chem. Phys. 138, 224110 (2013)

    Article  ADS  Google Scholar 

  101. Y.-C. Chiang, S. Klaiman, F. Otto, L.S. Cederbaum, J. Chem. Phys. 140, 054104 (2014)

    Article  ADS  Google Scholar 

  102. N.I. Gidopoulos, E.K.U. Gross, Philos. Trans. R. Soc. A 372, 20130059 (2014)

    Article  ADS  Google Scholar 

  103. A. Abedi, N.T. Maitra, E.K.C. Gross, Phys. Rev. Lett. 105, 123002 (2010)

    Article  ADS  Google Scholar 

  104. A. Abedi, N.T. Maitra, E.K.C. Gross, J. Chem. Phys. 137, 22A530 (2012)

    Article  Google Scholar 

  105. S. Belz, S. Zilberg, M. Berg, T. Grohmann, M. Leibscher, J. Phys. Chem. A 116, 11189 (2012)

    Article  Google Scholar 

  106. S. Al-Jabour, M. Leibscher, J. Phys. Chem. A 119, 271 (2015)

    Article  Google Scholar 

  107. G.W. Richings, G.A. Worth, J. Phys. Chem. A 119, 12457 (2016)

    Article  Google Scholar 

  108. G.A. Worth, M.A. Robb, Adv. Chem. Phys. 124, 355 (2002)

    Google Scholar 

  109. A. Csehi, A. Bende, G.J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay, M. Baer, J. Chem. Phys. 138, 024113 (2013)

    Article  ADS  Google Scholar 

  110. A. Csehi, A. Bende, G.J. Halász, Á. Vibók, A. Das, D. Mukhopadhyay, S, Mukherjee, S. Adhikari, M. Baer, J. Phys. Chem. A 118, 6361 (2014)

    Article  Google Scholar 

  111. A. Das, D. Mukhopadhyay, J. Phys. Chem. A 116, 1774 (2012)

    Article  Google Scholar 

  112. A. Das, D. Mukhopadhyay, Chem. Phys. 412, 51 (2013)

    Article  ADS  Google Scholar 

  113. A. Das, D. Mukhopadhyay, J. Phys. Chem. A 117, 8680 (2013)

    Article  Google Scholar 

  114. A.-Y. Yu, Phys. Chem. 10, 85 (2015)

    Google Scholar 

  115. M. Labuda, J. Gonzalez-Vazquez, M. Fernando, L. Gonzalez, Chem. Phys. 400, 165 (2012)

    Article  ADS  Google Scholar 

  116. C. Hu, R. Komakura, Z. Li, K. Watanebe, Int. J. Quant. Chem. 113, 263 (2013)

    Article  Google Scholar 

  117. E.N. Ghassami, J. Larson, A. Larson, J. Chem. Phys. 140, 154304 (2014)

    Article  ADS  Google Scholar 

  118. I.G. Ryabinkin, C.-H. Hsieh, R. Kapral, A.F. Izmaylov, J. Chem. Phys. 140, 084104 (2014)

    Article  ADS  Google Scholar 

  119. X. Liu, J.E. Subotnik, J. Chem. Theor. Comput. 10, 1004 (2014)

    Article  Google Scholar 

  120. S. Srivastava, M. Baer, N. Sathyamurthy, Mol. Phys. 113, 436 (2015)

    Article  ADS  Google Scholar 

  121. V. Dhindhwal, M. Baer, N. Sathyamurthy, J. Phys. Chem. A 120, 2999 (2016)

    Article  Google Scholar 

  122. R. Englman, J. Chem. Phys. 144, 024103 (2016)

    Article  ADS  Google Scholar 

  123. G.W. Richings, G.A. Worth, Chem. Phys. Lett. 683, 228 (2017)

    Article  ADS  Google Scholar 

  124. G.W. Richings, S. Habershon, Chem. Phys. Lett. (2017)

  125. K.K. Baeck, H. An, J. Chem. Phys. 146, 064107 (2017)

    Article  ADS  Google Scholar 

  126. C.L. Malbon, X. Zhu, H. Guo, D.R. Yarkony, J. Chem. Phys. 145, 234111 (2016)

    Article  ADS  Google Scholar 

  127. I. Last, M. Baer, J. Chem. Phys. 82, 4954 (1985)

    Article  ADS  Google Scholar 

  128. I.H. Zimmerman, J.-M. Yuan, T.F. George, J. Chem. Phys. 66, 2638 (1977)

    Article  ADS  Google Scholar 

  129. I.H. Zimmerman, M. Baer, T.F. George, J. Phys. Chem. 87, 1478 (1983)

    Article  Google Scholar 

  130. D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986)

    Article  ADS  Google Scholar 

  131. R. Kosloff, S.A. Rice, P. Gaspard, J. Chem. Phys. 139, 201 (1989)

    Google Scholar 

  132. B. Friedrich, D.P. Pullman, D.R. Herschbach, J. Phys. Chem. 95, 8118 (1991)

    Article  Google Scholar 

  133. D. Hammerich, R. Kosloff, M.A. Ratner, J. Chem. Phys. 97, 6410 (1992)

    Article  ADS  Google Scholar 

  134. R. Baer, R. Kosloff, J. Phys. Chem. A 99, 2534 (1995)

    Article  Google Scholar 

  135. B. Friedrich, D.R. Herschbach, Phys. Rev. Lett. 74, 4623 (1995)

    Article  ADS  Google Scholar 

  136. R. deVivie Riedel, K. Kobe, J. Manz, W. Meyer, B. Reisch, S. Rutz, E. Schriber, L. Wöste, J. Phys. Chem. 100, 7789 (1996)

    Article  Google Scholar 

  137. T.J. Martinez, M. Ben-Nun, R.D. Levine, J. Chem. Phys. 100, 7884 (1996)

    Article  Google Scholar 

  138. P.B. Corkum et al., Faraday Discuss. 113, 47 (1999)

    Article  ADS  Google Scholar 

  139. A. Staudte, D. Pavicie, S. Chelkowski, D. Zeidler, M. Meckel, H. Nikura, M. Scoffler, S. Schossler, B. Ulrich, P.P. Rajeev, T. Weber, T. Jahnke, D.M. Villeneuve, A.D. Bandrauk, C.L. Cocke, P.B. Corkum, R. Dorner, Phys. Rev. Lett. 98, 073003 (2007)

    Article  ADS  Google Scholar 

  140. S.A. Rice, Nature (London) 403, 496 (2000)

    Article  ADS  Google Scholar 

  141. D. Barash, A.E. Orel, R. Baer, Phys. Rev. A 61, 013402 (2000)

    Article  ADS  Google Scholar 

  142. S.I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  143. G. Balint-Kurti, F.R. Manby, Q. Ren, M. Artamonov, T.-S. Ho, H. Rabitz, J. Chem. Phys. 122, 084110 (2005)

    Article  ADS  Google Scholar 

  144. M. Barbatti, S. Belz, M. Leibscher, H. Lischka, J. Manz, Chem. Phys. 350, 145 (2008)

    Article  ADS  Google Scholar 

  145. D.J. Tannor, Introduction to quantum mechanics: a time dependent perspective (University Science Press, Sausalito, 2007)

  146. T. Seideman, S. Ramakrishna, Phys. Rev. Lett. 99, 113901 (2007)

    Article  ADS  Google Scholar 

  147. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  148. I. Barth, C. Bressler, S. Koseki, J. Manz, Chem. Asian J. 7, 1261 (2012)

    Article  Google Scholar 

  149. Y. Arasaki, S. Scheit, K. Takasuka, J. Chem. Phys. 138, 161103 (2013)

    Article  ADS  Google Scholar 

  150. N. Moiseyev, N. Sindelka, L.S. Cederbaum, J. Phys. B 41, 221001 (2008)

    Article  ADS  Google Scholar 

  151. N. Sindelka, N. Moiseyev, L.S. Cederbaum, J. Phys. B 44, 045603 (2011)

    Article  ADS  Google Scholar 

  152. G.J. Halász, Á. Vibók, H.-D. Mayer, L.S. Cederbaum, J. Phys. Chem. A 117, 8528 (2013)

    Article  Google Scholar 

  153. G.J. Halász, Á. Csehi, Á. Vibók, L.S. Cederbaum, J. Phys. Chem. A 118, 11908 (2014)

    Article  Google Scholar 

  154. R. Englman, The Jahn-Teller effect in molecules and crystals (Wiley Interscience, New York, 1972)

  155. M.S. Child, Adv. Chem. Phys. 124, 1 (2002)

    Google Scholar 

  156. I.B. Bersuker, V.Z. Polinger, Vibronic interactions in molecules and crystals (Springer, NY, 1989)

  157. I.B. Bersuker, Chem. Rev. 101, 1067 (2001)

    Article  Google Scholar 

  158. M. Baer, Mol. Phys. 115, 1534 (2017)

    Article  ADS  Google Scholar 

  159. P.A.M. Dirac, The principles of quantum chemistry, 4th edn. (Oxford University Press at the Clarendon Press, 1958), Chapter XI

  160. E. Eliav, S. Fritzsche, U. Kaldor, Nucl. Phys. A 944, 518 (2015)

    Article  ADS  Google Scholar 

  161. I. Infante, E. Eliav, L. Visscher, U. Kaldor, J. Chem. Phys. 127, 124308 (2007)

    Article  ADS  Google Scholar 

  162. M. Baer, arXiv:1703.01462 (2017)

  163. M. Baer, B. Mukherjee, D. Mukhopadhyay, S. Adhikari, arXiv:1801.00103 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Baer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baer, M. Introducing time-dependent molecular fields: a new derivation of the wave equations. Eur. Phys. J. D 72, 36 (2018). https://doi.org/10.1140/epjd/e2017-80327-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80327-y

Keywords

Navigation