Non-uniqueness of the multi-temperature law of mass action. Application to 2T plasma composition calculation by means of a collisional-radiative model

  • Julien Annaloro
  • Philippe Teulet
  • Arnaud Bultel
  • Yann Cressault
  • Alain Gleizes
Regular Article
  • 18 Downloads

Abstract

This work is devoted to the calculation of the composition for a monoatomic plasma (argon in the case presented) for which the assumption of thermal equilibrium is not realized. The plasma composition is obtained from a CR model, taking into account free electrons and a great number of electronic levels of Ar atoms and Ar+ ions. This model is based on a large set of transition probabilities and reaction rate coefficients for radiative processes (spontaneous emission and radiative recombination) and on an extended database of direct and reverse reaction rate coefficients for collisional processes (excitation/de-excitation and ionization/recombination mechanisms). Assuming Maxwellian energy distribution functions for electrons and heavy chemical species, detailed balance equations are determined for all kind of reactions in the frame of the micro reversibility principle. From these balance equations, reverse rate coefficients are calculated as a function of direct reaction rates and of electrons and heavy particles translation temperatures (T e and T h respectively). Particular attention is paid to problematic chemical reactions with electrons involved on one side and only heavy species on the other side such as: Ar + Ar → Ar + Ar+ + e. The detailed balance relations obtained for ionization/recombination processes demonstrate the non-uniqueness of the multi-temperature Saha-Eggert law (i.e. non-uniqueness of the multi-temperature law of mass action). Multi-temperature argon plasma compositions obtained in the present work exhibit abrupt density variations. These sharp variations are characteristic of the transition between the domination of heavy particle reactions (at low temperature) and the predominance of electron collisions (at high temperature).

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    A. Gleizes, J.J. Gonzalez, P. Freton, J. Phys. D: Appl. Phys. 38, R153 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    J. Mostaghimi, P. Proulx, M.I. Boulos, J. Phys. D: Appl. Phys. 61, 1753 (1987) ADSGoogle Scholar
  3. 3.
    M. El Morsli, P. Proulx, J. Phys. D: Appl. Phys. 40, 4810 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Tanaka, J. Phys. D: Appl. Phys. 37, 1190 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    R. Ye, A.B. Murphy, T. Ishigaki, Plasma Chem. Plasma Process. 27, 189 (2007) CrossRefGoogle Scholar
  6. 6.
    S.A. Al-Mamun, Y. Tanaka, Y. Uesugi, Plasma Chem. Plasma Process. 30, 141 (2010) CrossRefGoogle Scholar
  7. 7.
    S. Ghorui, J.V.R. Heberlein, E. Pfender, J. Phys. D: Appl. Phys. 40, 1966 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    M. Boselli, V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi, J. Phys. D: Appl. Phys. 46, 224009 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Trelles, J.V.R. Heberlein, E. Pfender, J. Phys. D: Appl. Phys. 40, 5937 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Bartosiewicz, P. Proulx, Y. Mercadier, J. Phys. D: Appl. Phys. 35, 2139 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    A. Kaminska, B. Lopez, B. Izrar, M. Dudek, Plasma Sources Sci. Technol. 17, 035018 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    M. Baeva, D. Uhrlandt, J. Phys. D: Appl. Phys. 46, 325202 (2013) CrossRefGoogle Scholar
  13. 13.
    P. Freton, J.J. Gonzalez, Z. Ranarijoana, J. Mougenot, J. Phys. D: Appl. Phys. 45, 465206 (2012) ADSCrossRefGoogle Scholar
  14. 14.
    V. Colombo, E. Ghedini, M. Boselli, P. Sanibondi, A. Concetti, J. Phys. D: Appl. Phys. 44, 194005 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    J. Park, J.V.R. Heberlein, E. Pfender, G. Candler, C.H. Chang, Plasma Chem. Plasma Process. 28, 213 (2008) CrossRefGoogle Scholar
  16. 16.
    M.S. Benilov, G.V. Naidis, J. Phys. D: Appl. Phys. 36, 1834 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    V. Rat, Ph.D. thesis, University of Limoges, France, 2001 (in French) Google Scholar
  18. 18.
    V. Rat, P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, D. Vacher, J. Phys. D: Appl. Phys. 35, 981 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    V. Rat, A.B. Murphy, J. Aubreton, M.F. Elchinger, P. Fauchais, J. Phys. D: Appl. Phys. 41, 183001 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    R.S. Devoto, Phys. Fluids 10, 2105 (1967) ADSCrossRefGoogle Scholar
  21. 21.
    C. Bonnefoi, Ph.D. thesis no. 15-83, University of Limoges, France, 1983 (in French) Google Scholar
  22. 22.
    H.X. Wang, S.Q. Chen, X. Chen, J. Phys. D: Appl. Phys. 45, 165202 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    J. Aubreton, M.F. Elchinger, P. Fauchais, Plasma Chem. Plasma Process. 18, 1 (1998) CrossRefGoogle Scholar
  24. 24.
    W.Z. Wang, M.Z. Rong, J.D. Yan, A.B. Murphy, J.W. Spencer, Phys. Plasmas 18, 113502 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    S. Ghorui, J.V.R. Heberlein, E. Pfender, Plasma Chem. Plasma Process. 27, 267 (2007) CrossRefGoogle Scholar
  26. 26.
    W.Z. Wang, M.Z. Rong, Y. Wu, J.W. Spencer, J.D. Yan, D.H. Mei, Phys. Plasmas 19, 083506 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    S. Ghorui, J.V.R. Heberlein, E. Pfender, Plasma Chem. Plasma Process. 28, 553 (2008) CrossRefGoogle Scholar
  28. 28.
    V. Colombo, E. Ghedini, P. Sanibondi, Plasma Sources Sci. Technol. 20, 035003 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    V. Colombo, E. Ghedini, P. Sanibondi, J. Phys. D: Appl. Phys. 42, 055213 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    J. Aubreton, M.F. Elchinger, V. Rat, P. Fauchais, J. Phys. D:Appl. Phys. 37, 34 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    V. Rat, P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, A. Lefort, Plasma Chem. Plasma Process. 22, 453 (2002) CrossRefGoogle Scholar
  32. 32.
    V. Rat, P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, A. Lefort, Plasma Chem. Plasma Process. 22, 475 (2002) CrossRefGoogle Scholar
  33. 33.
    J. Aubreton, M.F. Elchinger, J. Phys. D: Appl. Phys. 36, 1798 (2003) ADSCrossRefGoogle Scholar
  34. 34.
    J. Aubreton, M.F. Elchinger, P. Fauchais, V. Rat, P. André, J. Phys. D: Appl. Phys. 37, 2232 (2004) ADSCrossRefGoogle Scholar
  35. 35.
    W.B. White, S.M. Johnson, G.B. Dantzig, J. Chem. Phys. 28, 751 (1958) ADSCrossRefGoogle Scholar
  36. 36.
    D. Godin, J.Y. Trépanier, Plasma Chem. Plasma Process. 24, 447 (2004) CrossRefGoogle Scholar
  37. 37.
    D.R. Bates, A.E. Kingston, R.W.P. McWhirter, Proc. R. Soc. Lond. Ser. A 267, 297 (1962) ADSCrossRefGoogle Scholar
  38. 38.
    D.R. Bates, A.E. Kingston, R.W.P. McWhirter, Proc. R. Soc. Lond. Ser. A 270, 155 (1962) ADSCrossRefGoogle Scholar
  39. 39.
    V. Rat, A.B. Murphy, J. Aubreton, M.F. Elchinger, P. Fauchais, J. Phys. D: Appl. Phys. 41, 183001 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    P. André, IEEE Trans. Plasma Sci. 23, 453 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    P. André, A. Lefort, J. Phys. D: Appl. Phys. 31, 717 (1998) ADSCrossRefGoogle Scholar
  42. 42.
    X. Chen, P. Han, J. Phys. D: Appl. Phys. 32, 1711 (1999) ADSCrossRefGoogle Scholar
  43. 43.
    P. André, J. Aubreton, M.F. Elchinger, V. Rat, P. Fauchais, A. Lefort, A.B. Murphy, Plasma Chem. Plasma Process. 24, 435 (2004) CrossRefGoogle Scholar
  44. 44.
    I. Prigogine, Bull. Cl. Sci. Acad. R. Belg. 26, 53 (1940) Google Scholar
  45. 45.
    A.V. Potapov, High Temp. 4, 48 (1966) Google Scholar
  46. 46.
    M.C.M. Van de Sanden, P.P.J.M. Schram, A.G. Peeters, J.A.M. Van der Mullen, G.M.W. Kroesen, Phys. Rev. E 40, 5273 (1989) ADSCrossRefGoogle Scholar
  47. 47.
    Y. Tanaka, Y. Yokomizu, M. Ishikawa, T. Matsumura, IEEE Trans. Plasma Sci. 25, 991 (1997) ADSCrossRefGoogle Scholar
  48. 48.
    A. Gleizes, B. Chervy, J.J. Gonzalez, J. Phys. D: Appl. Phys. 32, 2060 (1999) ADSCrossRefGoogle Scholar
  49. 49.
    P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, A. Lefort, Plasma Chem. Plasma Process. 21, 83 (2001) CrossRefGoogle Scholar
  50. 50.
    D. Giordano, M. Capitelli, Phys. Rev. E 65, 016401 (2001) ADSCrossRefGoogle Scholar
  51. 51.
    J. Bacri, M. Lagreca, A. Médani, Physica B&C 113, 403 (1982) ADSCrossRefGoogle Scholar
  52. 52.
    J.A. Kunc, W.H. Soon, Phys. Rev. A 40, 5822 (1989) ADSCrossRefGoogle Scholar
  53. 53.
    L.C. Pierrot, C.O. Laux, C.H. Kruger, AIAA Paper AIAA 98-2664, in Proceedings of the 29th Plasmadynamics and Lasers Conference, 1998, June 15–18, Albuquerque, NM, USA (1998) Google Scholar
  54. 54.
    A.M. Gomes, A. Essoltani, J. Bacri, J. Quant. Spectrosc. Radiat. Transf. 43, 471 (1990) ADSCrossRefGoogle Scholar
  55. 55.
    W.H. Soon, J.A. Kunc, Phys. Rev. A 41, 825 (1990) ADSCrossRefGoogle Scholar
  56. 56.
    C.O. Laux, L. Yu, D.M. Packan, R.J. Gessman, L.C. Pierrot, C.H. Kruger, R.N. Zare, AIAA Paper AIAA 99-3476, in Proceedings of the 30th Plasmadynamics and Lasers Conference, June 28–July 1, 1999, Norfolk, VA, USA (1999) Google Scholar
  57. 57.
    Ph. Teulet, J.P. Sarrette, A.M. Gomes, J. Quant. Spectrosc. Radiat. Transf. 70, 159 (2001) ADSCrossRefGoogle Scholar
  58. 58.
    M. Lino Da Silva, V. Guerra, J. Loureiro, Plasma Sources Sci. Technol. 18, 034023 (2009) ADSCrossRefGoogle Scholar
  59. 59.
    A. Bultel, J. Annaloro, V. Morel, J. Phys.: Conf. Ser. 399, 012014 (2012) Google Scholar
  60. 60.
    C. Park, Nonequilibrium hypersonic aerothermodynamics (Wiley, New York, 1990) Google Scholar
  61. 61.
    W.L. Hankey, Re-entry aerodynamics. AIAA education series (AIAA Inc., Washington, DC, 1988) Google Scholar
  62. 62.
    J.D. Anderson, Hypersonic and high temperature gas dynamics (McGraw-Hill, New York, 1989) Google Scholar
  63. 63.
    A. Bultel, B.G. Chéron, A. Bourdon, O. Motapon, I.F. Schneider, Phys. Plasmas 13, 043502 (2006) ADSCrossRefGoogle Scholar
  64. 64.
    J. Annaloro, A. Bultel, Phys. Plasmas 21, 123512 (2014) ADSCrossRefGoogle Scholar
  65. 65.
    A. Bultel, J. Annaloro, Plasma Sources Sci. Technol. 22, 025008 (2013) ADSCrossRefGoogle Scholar
  66. 66.
    D.J. Drake, S. Popovic, L. Vuskovic, T. Dinh, IEEE Trans. Plasma Sci. 37, 1646 (2009) ADSCrossRefGoogle Scholar
  67. 67.
    A.M. Brandis, C.O. Laux, T. Magin, T.J. McIntyre, R.G. Morgan, J. Thermophys. Heat Transf. 28, 32 (2014) CrossRefGoogle Scholar
  68. 68.
    P. André, Contrib. Plasma Phys. 37, 23 (1997) ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    P. André, M. Abbaoui, R. Bessege, A. Lefort, Plasma Chem. Plasma Process. 17, 207 (1997) CrossRefGoogle Scholar
  70. 70.
    E. Richley, D.T. Tuma, J. Appl. Phys. 53, 8537 (1982) ADSCrossRefGoogle Scholar
  71. 71.
    G.J. Cliteur, K. Suzuki, Y. Tanaka, T. Sakuta, T. Matsubara, Y. Yokomizu, T. Matsumura, J. Phys. D: Appl. Phys. 32, 1851 (1999) ADSCrossRefGoogle Scholar
  72. 72.
    V. Rat, P. André, J. Aubreton, M.F. Elchinger, P. Fauchais, A. Lefort, J. Phys. D: Appl. Phys. 34, 2191 (2001) ADSCrossRefGoogle Scholar
  73. 73.
  74. 74.
    Y.B. Zel’dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Mineola, New York, 2002) Google Scholar
  75. 75.
    H.W. Drawin, Collision and transport cross sections, Report EUR-CEA-FC 383, 1966 Google Scholar
  76. 76.
    A. Bultel, B. Van Ootegem, A. Bourdon, P. Vervisch, Phys. Rev. E 65, 046046 (2002) CrossRefGoogle Scholar
  77. 77.
    H.W. Drawin, F. Emard, Phys. Lett. 43A, 333 (1973) ADSCrossRefGoogle Scholar
  78. 78.
    C.O. Laux, Ph.D. thesis, Stanford University, HTGL Report T-288, 1993 Google Scholar
  79. 79.
    A.R. Hochstim, Kinetic processes in gases and plasmas (Academic Press, New York, 1969) Google Scholar
  80. 80.
    J. Oxenius, Kinetic theory of particles and photons (Springer-Verlag, Berlin, 1986) Google Scholar
  81. 81.
    C.B. Collins, Phys. Rev. 158, 94 (1967) ADSCrossRefGoogle Scholar
  82. 82.
    D.R. Bates, S.P. Khare, Proc. Phys. Soc. (Lond.) 85, 231 (1965) ADSCrossRefGoogle Scholar
  83. 83.
    P.N. Brown, G.D. Byrne, A.C. Hindmarsh, SIAM J. Sci. Stat. Comput. 10, 1038 (1989) CrossRefGoogle Scholar
  84. 84.
    R. Goldstein, Numerical calculation of electron-atom excitation and ionization rates using Gryzinski cross sections, NASA Technical Report 32-1372, Jet Propulsion Laboratory, Pasadena, California, USA, 1969 Google Scholar
  85. 85.
    R.J. Giannaris, F.P. Incropera, J. Quant. Spectrosc. Radiat. Transf. 11, 291 (1971) ADSCrossRefGoogle Scholar
  86. 86.
    H.V.R. Van Regemorter, Astrophys. J. 136, 906 (1962) ADSCrossRefGoogle Scholar
  87. 87.
    P. Mansbach, J. Keck, Phys. Rev. 181, 275 (1969) ADSCrossRefGoogle Scholar
  88. 88.
    J.J. Lowke, E.R. Capriotti, J. Quant. Spectrosc. Radiat. Transf. 9, 207 (1969) ADSCrossRefGoogle Scholar
  89. 89.
    J.J. Lowke, J. Quant. Spectrosc. Radiat. Transf. 14, 111 (1974) ADSCrossRefGoogle Scholar
  90. 90.
    R.W. Libermann, J.J. Lowke, J. Quant. Spectrosc. Radiat. Transf. 16, 253 (1976) ADSCrossRefGoogle Scholar
  91. 91.
    R. Hannachi, Y. Cressault, D. Salem, Ph. Teulet, L. Beji, Z. Ben Lakhdar, J. Phys. D: Appl. Phys. 45, 485206 (2012) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Julien Annaloro
    • 1
    • 2
  • Philippe Teulet
    • 1
  • Arnaud Bultel
    • 2
  • Yann Cressault
    • 1
  • Alain Gleizes
    • 1
  1. 1.Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d’Energie)Toulouse Cedex 9France
  2. 2.CORIA, UMR CNRS 6614, Université de Rouen, Site universitaire du MadrilletSaint-Etienne du RouvrayFrance

Personalised recommendations