Skip to main content
Log in

Impact of the cavitation bubble on a plasma emission following laser ablation in liquid

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this work, the impact of the cavitation bubble on a plasma emission produced after the interaction of the strong focused laser radiation with the target in the liquid was studied. Several experimental techniques were applied to assess different aspects of the complex phenomena of the laser induced breakdown in the liquid media. The results of the fast photography, Schlieren and shadowgraphy techniques were compared with the results of simpler probe beam techniques, transmission and scattering. In addition, emission from the plasma was analysed using optical emission spectroscopy, with aim to relate the quality of the recorded spectral lines to the bubble properties. Bubble had proved to be more convenient surrounding than the liquid for the long lasting plasma emission, due to the high temperature and pressure state inside of it and significantly lower density, which causes less confined plasma. Changes in refractive index of the bubble were also monitored, although in the limited time interval, when the bubble was sufficiently expanded and the refractive index difference between the bubble and the water was large enough to produce glory rings and the bright spot in the bubble’s centre. Reshaping of the plasma emission due to the optical properties of the bubble was detected and the need for careful optimization of the optical system was stressed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, S. Amoruso, O. De Pascale, Spectrochim. Acta B 78, 1 (2012)

    Article  ADS  Google Scholar 

  2. S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023114 (2007)

    Article  ADS  Google Scholar 

  3. S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023115 (2007)

    Article  ADS  Google Scholar 

  4. A.J. Effenberger Jr., J.R. Scott, Sensors 10, 4907 (2010)

    Article  Google Scholar 

  5. F.J. Fortes, J. Moros, P. Lucena, L.M. Cabalín, J.J. Laserna, Anal. Chem. 85, 640 (2013)

    Article  Google Scholar 

  6. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)

    Article  ADS  Google Scholar 

  7. S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Phys. D: Appl. Phys. 35, 2935 (2002)

    Article  Google Scholar 

  8. V.V. Maksimov, A.M. Orishich, A.G. Ponomarenko, V.N. Snytnikov, Sov. Phys. JETP 69, 712 (1989)

    Google Scholar 

  9. X. Gao, L. Liu, C. Song, J. Lin, J. Phys. D: Appl. Phys. 48, 175205 (2015)

    Article  ADS  Google Scholar 

  10. S.J. Choi, K.J. Lee, J.J. Yoh, Spectrochim. Acta B 97, 113 (2014)

    Article  ADS  Google Scholar 

  11. P. Kennedy, D. Hammer, B. Rockwell, Prog. Quantum Electron. 21, 155 (1997)

    Article  ADS  Google Scholar 

  12. A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  13. V. Nuzzo, M. Savoldelli, J.-M. Legeais, K. Plamann, J. Biomed. Opt. 15, 038003 (2010)

    Article  ADS  Google Scholar 

  14. A. Kruusing, Opt. Lasers Eng. 41, 307 (2004)

    Article  Google Scholar 

  15. A. Kruusing, Opt. Lasers Eng. 41, 329 (2004)

    Article  Google Scholar 

  16. K. Sasaki, N. Takada, Pure Appl. Chem. 82, 1317 (2010)

    Article  Google Scholar 

  17. H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  18. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  19. M. Dell’Aglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015)

    Article  Google Scholar 

  20. R. Tanabe, T.T.P. Nguyen, T. Sugiura, Y. Ito, Appl. Surf. Sci. 351, 327 (2015)

    Article  Google Scholar 

  21. S. Kohsakowski, B. Gökce, R. Tanabe, P. Wagener, A. Plech, Y. Ito, S. Barcikowski, Phys. Chem. Chem. Phys. 18, 16585 (2016)

    Article  Google Scholar 

  22. J. Lam, J. Lombard, C. Dujardin, G. Ledoux, S. Merabia, D. Amans, Appl. Phys. Lett. 108, 074104 (2016)

    Article  ADS  Google Scholar 

  23. A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 13, 3083 (2013)

    Article  Google Scholar 

  24. R. Petkovšek, P. Gregorčič, J. Možina, Meas. Sci. Technol. 18, 2972 (2007)

    Article  ADS  Google Scholar 

  25. C.S. Peel, X. Fang, S.R. Ahmad, Appl. Phys. A 103, 1131 (2011)

    Article  ADS  Google Scholar 

  26. R. Petkovšek, P. Gregorčič, J. Appl. Phys. 102, 044909 (2007)

    Article  ADS  Google Scholar 

  27. A. De Giacomo, M. Dell’Aglio, O. De Pascale, M. Capitelli, Spectrochim. Acta B 62, 721 (2007)

    Article  ADS  Google Scholar 

  28. V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta B 82, 42 (2013)

    Article  ADS  Google Scholar 

  29. V. Lazic, J.J. Laserna, S. Jovicevic, Spectrochim. Acta B 82, 50 (2013)

    Article  ADS  Google Scholar 

  30. A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, T. Sakka, J. Appl. Phys. 117, 173304 (2015)

    Article  ADS  Google Scholar 

  31. M.R. Gavrilović, M. Cvejić, V. Lazic, S. Jovićević, Phys. Chem. Chem. Phys. 18, 14629 (2016)

    Article  Google Scholar 

  32. M.R. Gavrilović, V. Lazic, S. Jovićević, J. Anal. At. Spectrom. 32, 345 (2017)

    Article  Google Scholar 

  33. T. Sakka, K. Takatani, Y.H. Ogata, M. Mabuchi, J. Phys. D: Appl. Phys. 35, 65 (2002)

    Article  ADS  Google Scholar 

  34. T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Jpn. J. Appl. Phys. 46, 1533 (2007)

    Article  ADS  Google Scholar 

  35. K. Saito, K. Takatani, T. Sakka, Y.H. Ogata, Appl. Surf. Sci., 197–198, 56 (2002)

    Article  Google Scholar 

  36. K.K. Kim, M. Roy, H. Kwon, J.K. Song, S.M. Park, J. Appl. Phys. 117, 074302 (2015)

    Article  ADS  Google Scholar 

  37. Y. Zhou, S. Tao, B. Wu, Appl. Phys. Lett. 99, 051106 (2011)

    Article  ADS  Google Scholar 

  38. S. Tao, Y. Zhou, B. Wu, Y. Gao, Appl. Surf. Sci. 258, 7766 (2012)

    Article  ADS  Google Scholar 

  39. Bubble dynamics & shock waves, SHOCKWAVES, edited by C.F. Delale (Springer-Verlag, Berlin Heidelberg, 2013), Vol. 8

  40. G. Cristoforetti, M. Tibberi, A. Simonelli, P. Marsili, F. Giammanco, Appl. Opt. 51, B30 (2012)

    Article  Google Scholar 

  41. K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Express 2, 046501 (2009)

    Article  ADS  Google Scholar 

  42. B. Thornton, T. Sakka, T. Takahashi, A. Tamura, T. Masamura, A. Matsumoto, Appl. Phys. Express 6, 082401 (2013)

    Article  ADS  Google Scholar 

  43. J.-P. Franc, J.-M. Michel, Fundamentals of cavitation (Kluwer Academic Publishers, 2004)

  44. S. Dehaeck, J.P.A.J. van Beeck, Appl. Opt. 46, 5957 (2007)

    Article  ADS  Google Scholar 

  45. C. Bongiovanni, A. Dominguez, J.-P. Chevaillier, Eur. J. Phys. 21, 561 (2000)

    Article  Google Scholar 

  46. V. Lazic, S. Jovicevic, M. Carpanese, Appl. Phys. Lett. 101, 054101 (2012)

    Article  ADS  Google Scholar 

  47. A. Matsumoto, A. Tamura, A. Kawasaki, T. Honda, P. Gregorčič, N. Nishi, K.I. Amano, K. Fukami, T. Sakka, Appl. Phys. A 122, 234 (2016)

    Article  ADS  Google Scholar 

  48. J. Chen, X. Li, Y. Gua, H. Wang, X. Song, H. Zeng, J. Colloid Interface Sci. 489, 38 (2017)

    Article  ADS  Google Scholar 

  49. W.J. Lentz, A.A. Atchley, D.F. Gaitan, Appl. Opt. 34, 2648 (1995)

    Article  ADS  Google Scholar 

  50. B.P. Barber, S.J. Putterman, Phys. Rev. Lett. 69, 3839 (1992)

    Article  ADS  Google Scholar 

  51. A. De Giacomo, A. De Bonis, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, S. Orlando, A. Santagata, G.S. Senesi, F. Taccogna, R. Teghil, J. Phys. Chem. C 115, 5123 (2011)

    Article  Google Scholar 

  52. H. Suzuki, H. Nishikawa, I.-Y.S. Lee, Phys. Chem. Commun. 5, 88 (2002)

    Google Scholar 

  53. H. Ushida, N. Takada, K. Sasaki, J. Phys.: Conf. Ser. 59, 563 (2007)

    Google Scholar 

  54. P.W.J.M. Boumans, Theory of spectrochemical excitation (Springer US, 1995)

  55. L.S. Ornstein, H. Brinkman, Communication from the Physical Institute of the University of Utrecht, 1931

  56. P. Sriramachandran, B. Viswanathan, R. Shanmugavel, Sol. Phys. 286, 315 (2013)

    Article  ADS  Google Scholar 

  57. C. Parigger, A. Woods, D. Surmick, G. Gautam, M. Witte, J. Hornkohl, Spectrochim. Acta B 107, 132 (2015)

    Article  ADS  Google Scholar 

  58. A. Casavola, A. De Giacomo, M. Dell’Aglio, F. Taccogna, G. Colonna, O. De Pascale, S. Longo, Spectrochim. Acta B 60, 975 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana R. Gavrilović.

Additional information

Contribution to the “Topical Issue: Physics of Ionized Gases (SPIG 2016)”, edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilović, M.R. Impact of the cavitation bubble on a plasma emission following laser ablation in liquid. Eur. Phys. J. D 71, 316 (2017). https://doi.org/10.1140/epjd/e2017-80282-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80282-7

Navigation