Skip to main content

Advertisement

SpringerLink
Conditional quasi-exact solvability of the quantum planar pendulum and of its anti-isospectral hyperbolic counterpart
Download PDF
Download PDF

Associated Content

Part of a collection:

Topical Issue: Dynamics of Molecular Systems (MOLEC 2016)

  • Regular Article
  • Open Access
  • Published: 13 June 2017

Conditional quasi-exact solvability of the quantum planar pendulum and of its anti-isospectral hyperbolic counterpart

  • Simon Becker1,
  • Marjan Mirahmadi1,
  • Burkhard Schmidt1,
  • Konrad Schatz2 &
  • …
  • Bretislav Friedrich2 

The European Physical Journal D volume 71, Article number: 149 (2017) Cite this article

  • 446 Accesses

  • 7 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We have subjected the planar pendulum eigenproblem to a symmetry analysis with the goal of explaining the relationship between its conditional quasi-exact solvability (C-QES) and the topology of its eigenenergy surfaces, established in our earlier work [Front. Phys. Chem. Chem. Phys. 2, 1 (2014)]. The present analysis revealed that this relationship can be traced to the structure of the tridiagonal matrices representing the symmetry-adapted pendular Hamiltonian, as well as enabled us to identify many more – 40 in total to be exact – analytic solutions. Furthermore, an analogous analysis of the hyperbolic counterpart of the planar pendulum, the Razavy problem, which was shown to be also C-QES [Am. J. Phys. 48, 285 (1980)], confirmed that it is anti-isospectral with the pendular eigenproblem. Of key importance for both eigenproblems proved to be the topological index κ, as it determines the loci of the intersections (genuine and avoided) of the eigenenergy surfaces spanned by the dimensionless interaction parameters η and ζ. It also encapsulates the conditions under which analytic solutions to the two eigenproblems obtain and provides the number of analytic solutions. At a given κ, the anti-isospectrality occurs for single states only (i.e., not for doublets), like C-QES holds solely for integer values of κ, and only occurs for the lowest eigenvalues of the pendular and Razavy Hamiltonians, with the order of the eigenvalues reversed for the latter. For all other states, the pendular and Razavy spectra become in fact qualitatively different, as higher pendular states appear as doublets whereas all higher Razavy states are singlets.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A. de Souza Dutra, Phys. Rev. A 47, R2435 (1993)

    Article  ADS  Google Scholar 

  2. A. González-López, N. Kamran, P.J. Olver, Commun. Math. Phys. 153, 117 (1993)

    Article  ADS  Google Scholar 

  3. B. Schmidt, B. Friedrich, Front. Phys. Phys. Chem. Chem. Phys. 2, 1 (2014)

    Google Scholar 

  4. M. Child, Adv. Chem. Phys. 136, 39 (2007)

    Google Scholar 

  5. D. Herschbach, J. Chem. Phys. 27, 975 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Herschbach, J. Chem. Phys. 31, 91 (1959)

    Article  ADS  Google Scholar 

  7. S. Ramakrishna, T. Seideman, Phys. Rev. Lett. 99, 103001 (2007)

    Article  ADS  Google Scholar 

  8. S.M. Parker, M.A. Ratner, T. Seideman, J. Chem. Phys. 135, 224301 (2011)

    Article  ADS  Google Scholar 

  9. A.C.P. Bitencourt, M. Ragni, G.S. Maciel, V. Aquilanti, F.V. Prudente, J. Chem. Phys. 129, 154316 (2008)

    Article  ADS  Google Scholar 

  10. L.F. Roncaratti, V. Aquilanti, Int. J. Quant. Chem. 110, 716 (2010)

    Article  ADS  Google Scholar 

  11. Z. Yun-bo, N. Yi-hang, K. Su-peng, W. Xiao-bing, L. Jiu-qing, P. Fu-ke, P. Fu-cho, Chin. Phys. Lett. 15, 683 (1998)

    Article  ADS  Google Scholar 

  12. V.V. Ulyanov, O.B. Zaslavaskii, Zh. Eksp. Teor. Fiz. 87, 1724 (1984)

    Google Scholar 

  13. O.B. Zaslavskii, V.V. Ulyanov, Y.V. Vasilevskaya, Low Temp. Phys. 23, 968 (1997)

    Article  ADS  Google Scholar 

  14. B. Friedrich, D. Pullman, D. Herschbach, J. Phys. Chem. 95, 8118 (1991)

    Article  Google Scholar 

  15. M. Leibscher, B. Schmidt, Phys. Rev. A 80, 012510 (2009)

    Article  ADS  Google Scholar 

  16. A.D. Hemery, A.P. Veselov, J. Math. Phys. 51, 072108 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Finkel, A. González-López, M.A. Rodríguez, J. Phys. A: Math. Gen. 32, 6821 (1999)

    Article  ADS  Google Scholar 

  18. A.V. Turbiner, Commun. Math. Phys. 118, 467 (1988)

    Article  ADS  Google Scholar 

  19. A. Khare, B.P. Mandal, J. Math. Phys. 39, 3476 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Habib, A. Khare, A. Saxena, Phys. D: Nonlinear Phenom. 123, 341 (1998)

    Article  ADS  Google Scholar 

  21. H. Konwent, P. Machnikowski, P. Magnuszewski, A. Radosz, J. Phys. A: Math. Gen. 31, 7541 (1998)

    Article  ADS  Google Scholar 

  22. A. Khare, U. Sukhatme, J. Phys. A: Math. Gen. 37, 10037 (2004)

    Article  ADS  Google Scholar 

  23. B. Bagchi, S. Mallik, C. Quesne, R. Roychoudhury, Phys. Lett. A 289, 34 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. C.A. Condat, R.A. Guyer, M.D. Miller, Phys. Rev. B 27, 474 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. D.K. Campbell, M. Peyrard, P. Sodano, Phys. D: Nonlinear Phenom. 19, 165 (1986)

    Article  ADS  Google Scholar 

  26. A. Khare, S. Habib, A. Saxena, Phys. Rev. Lett. 79, 3797 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. S.N. Behera, A. Khare, J. Phys. Colloq. 42, C6 (1981)

    Google Scholar 

  28. P.B. Burt, Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 359, 479 (1978)

    Article  ADS  Google Scholar 

  29. S. Kar, A. Khare, Am. J. Phys. 68, 1128 (2000)

    Article  ADS  Google Scholar 

  30. A. Alonso-Izquierdo, J.M. Guilarte, AIP Conf. Proc. 1606, 321 (2014)

    Article  ADS  Google Scholar 

  31. M. Razavy, Quantum Theory of Tunneling (World Scientific, 2003)

  32. J. Ulrich, D. Otten, F. Hassler, Phys. Rev. B 92, 245444 (2015)

    Article  ADS  Google Scholar 

  33. H. Konwent, Phys. Lett. A 118, 467 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Graham, M. Schlautmann, P. Zoller, Phys. Rev. A 45, R19 (1992)

    Article  ADS  Google Scholar 

  35. A. Krajewska, A. Ushveridze, Z. Walczak, Mod. Phys. Lett. A 12, 1225 (1997)

    Article  ADS  Google Scholar 

  36. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Razavy, Am. J. Phys. 48, 285 (1980)

    Article  ADS  Google Scholar 

  38. M.A. Leon, J.M. Guilarte, A.M. Mosquera, M. Mayado, preprint at arXiv:1406.2643 (2014)

  39. A. Turbiner, SIDE III: Symmetries and Integrability of Difference Equations (1999), Vol. 25, p. 407

  40. D. Gómez-Ullate, N. Kamran, R. Milson, Phys. At. Nucl. 70, 520 (2007)

    Article  Google Scholar 

  41. D. Gómez-Ullate, N. Kamran, R. Milson, J. Phys. A: Math. Gen. 38, 2005 (2005)

    Article  ADS  Google Scholar 

  42. P. Djakov, B. Mityagin, J. Approx. Theory 135, 70 (2005)

    Article  MathSciNet  Google Scholar 

  43. W. Magnus, S. Winkler, Hill’s Equation (Dover Publications Inc., 2004)

  44. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, 1972)

  45. M. Berry, Sci. Am. 259, 46 (1988)

    Article  Google Scholar 

  46. P.R. Bunker, P. Jensen, Fundamentals of Molecular Symmetry (Institute of Physics Publishing, 2005)

  47. R. von Mises, Phys. Z. 19, 490 (1918)

    Google Scholar 

  48. B. Schmidt, B. Friedrich, J. Chem. Phys. 140, 064317 (2014)

    Article  ADS  Google Scholar 

  49. F.W.J. Olver, D.M. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010)

  50. N. Kamran, P.J. Olver, J. Math. Anal. Appl. 145, 342 (1990)

    Article  MathSciNet  Google Scholar 

  51. A. González-López, N. Kamran, P.J. Olver, Contemp. Math. 160, 113 (1994)

    Article  Google Scholar 

  52. S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices (Princeton Series in Applied Mathematics) (Princeton University Press, New Jersey, 2011)

  53. K. Veselić, Lin. Alg. Appl. 27, 167 (1979)

    Article  Google Scholar 

  54. B. Schmidt, U. Lorenz, Comput. Phys. Commun. 213, 223 (2017)

    Article  ADS  Google Scholar 

  55. V.V. Ulyanov, O.B. Zaslavskii, Phys. Rep. 216, 179 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  56. S. Winkler, W. Magnus, The coexistence problem for Hill’s equation (Courant Institute of Mathematical Sciences, New York University, New York, 1958)

  57. R. Meyer, J. Chem. Phys. 52, 2053 (1970)

    Article  ADS  Google Scholar 

  58. C.C. Marston, G.G. Balint-Kurti, J. Chem. Phys. 91, 3571 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  59. G. Teschl, Ordinary differential equations and Dynamical Systems (American Mathematical Society, 2012)

  60. U.H. Gerlach, Linear Mathematics in Infinite Dimensions: Signals Boundary Value Problems and Special Functions, 2nd edn. (Online Pub. Ohio State University, 2015)

  61. M. Lemeshko, M. Mustafa, S. Kais, B. Friedrich, Phys. Rev. A 83, 043415 (2011)

    Article  ADS  Google Scholar 

  62. M. Lemeshko, M. Mustafa, S. Kais, B. Friedrich, New J. Phys. 13, 063036 (2011)

    Article  ADS  Google Scholar 

  63. B. Schmidt, B. Friedrich, Phys. Rev. A 91, 022111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  64. M. Robnik, J. Phys. A: Math. Gen. 30, 1287 (1997)

    Article  ADS  Google Scholar 

  65. J. Ortigoso, M. Rodriguez, M. Gupta, B. Friedrich, J. Chem. Phys. 110, 3870 (1999)

    Article  ADS  Google Scholar 

  66. L. Cai, B. Friedrich, Collect. Czech. Chem. Commun. 66, 013402 (2001)

    Article  Google Scholar 

  67. M. Leibscher, I.S. Averbukh, H. Rabitz, Phys. Rev. A 69, 013402 (2004)

    Article  ADS  Google Scholar 

  68. N. Owschimikow, B. Schmidt, N. Schwentner, Phys. Rev. A 80, 053409 (2009)

    Article  ADS  Google Scholar 

  69. N. Owschimikow, B. Schmidt, N. Schwentner, Phys. Chem. Chem. Phys. 13, 8671 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany

    Simon Becker, Marjan Mirahmadi & Burkhard Schmidt

  2. Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4–6, 14195, Berlin, Germany

    Konrad Schatz & Bretislav Friedrich

Authors
  1. Simon Becker
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Marjan Mirahmadi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Burkhard Schmidt
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Konrad Schatz
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Bretislav Friedrich
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Burkhard Schmidt or Bretislav Friedrich.

Additional information

Contribution to the Topical Issue: “Dynamics of Molecular Systems (MOLEC 2016)”, edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Becker, S., Mirahmadi, M., Schmidt, B. et al. Conditional quasi-exact solvability of the quantum planar pendulum and of its anti-isospectral hyperbolic counterpart. Eur. Phys. J. D 71, 149 (2017). https://doi.org/10.1140/epjd/e2017-80134-6

Download citation

  • Received: 28 February 2017

  • Revised: 27 March 2017

  • Published: 13 June 2017

  • DOI: https://doi.org/10.1140/epjd/e2017-80134-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Topical Issue: Dynamics of Molecular Systems (MOLEC 2016)

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.