Skip to main content
Log in

Transient negative ion spectrum of the cytosine-guanine pair

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We employed elastic scattering calculations, performed in the static exchange approximation, to investigate the π transient anion states of cytosine, guanine and the cytosine-guanine pair. Our results for the isolated monomers, also obtained in the static-exchange plus polarization approximation, are in good agreement with the available calculations and electron transmission data. Virtual orbital analysis for the lower-lying π anion states, with pure shape resonance character, indicates that electron attachment to the cytosine-guanine pair gives rise to resonances located on either monomer (the orbitals do not delocalize over the pair). The π shape resonances of the pair localized on the cytosine unit have lower energies in comparison with those of the isolated base, with the opposite trend for the guanine unit. The underlying mechanism would be the net positive charge transfer to the cytosine unit, as the guanine monomer acts as a proton donor in two out of the three hydrogen bonds formed in the pair. Even though the calculations were performed in the static-exchange approximation (due to the size of the system), the conclusions drawn were also corroborated by empirical estimates of the vertical attachment energies. The results for the cytosine-guanine pair are compared to those previously obtained for the formic acid-formamide complex, having two hydrogen bonds with opposite donor/acceptor characters and negligible charge transfer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    Article  ADS  Google Scholar 

  2. International Commission on Radiation Units and Measurements, ICRU Report 31 (ICRU, Washington, DC, 1979)

  3. T. Jahnke, H. Sann, T. Havermeier, K. Kreidi, C. Stuck, M. Meckel, M. Schöffler, N. Neumann, R. Wallauer, S. Voss, A. Czasch, O. Jagutzki, A. Malakzadeh, F. Afaneh, Th. Weber, H. Schmidt-Böcking, R. Dörner, Nat. Phys. 139, 6 (2010)

    Google Scholar 

  4. I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

    Article  ADS  Google Scholar 

  5. P.D. Burrow, A. Modelli, N.S. Chiu, K.D. Jordan, Chem. Phys. Lett. 82, 270 (1981)

    Article  ADS  Google Scholar 

  6. R. Barrios, P. Skurski, J. Simons, J. Phys. Chem. B 106, 7991 (2002)

    Article  Google Scholar 

  7. J. Berdys, I. Anusiewicz, P. Skurski, J. Simons, J. Phys. Chem. A 108, 2999 (2004)

    Article  Google Scholar 

  8. J. Berdys, P. Skurski, J. Simons, J. Phys. Chem. B 108, 5008 (2004)

    Article  Google Scholar 

  9. I. Anusiewicz, J. Berdys, M. Sobczyk, P. Skurski, J. Simons, J. Phys. Chem. A 108, 11381 (2004)

    Article  Google Scholar 

  10. C. Winstead, V. McKoy, Rad. Phys. Chem. 77, 1258 (2008)

    Article  ADS  Google Scholar 

  11. S. Caprasecca, J.D. Gorfinkel, D. Bouchiha, L. Caron, J. Phys. B 42, 095205 (2009)

    Article  ADS  Google Scholar 

  12. I.I. Fabrikant, S. Caprasecca, G.A. Gallup, J.D. Gorfinkel, J. Chem. Phys. 136, 184301 (2012)

    Article  ADS  Google Scholar 

  13. M. Smyth, J. Kohanoff, I.I. Fabrikant, J. Chem. Phys. 140, 184313 (2014)

    Article  ADS  Google Scholar 

  14. M. Neustetter, J. Aysina, F.F. da Silva, S. Denifl, Angew. Chem. Int. Ed. 54, 9124 (2015)

    Article  Google Scholar 

  15. T.C. Freitas, M.A.P. Lima, S. Canuto, M.H.F. Bettega, Phys. Rev. A 80, 062710 (2009)

    Article  ADS  Google Scholar 

  16. T.C. Freitas, S. d’A. Sanchez, M.T. do N. Varella, M.H.F. Bettega, Phys. Rev. A 84, 062714 (2011)

    Article  ADS  Google Scholar 

  17. T.C. Freitas, K. Coutinho, M.T. do N. Varella, M.A.P. Lima, S. Canuto, M.H.F. Bettega, J. Chem. Phys. 138, 174307 (2013)

    Article  ADS  Google Scholar 

  18. L.M. Cornetta, K. Coutinho, S. Canuto, M.T. do N. Varella, Eur. Phys. J. D 70, 176 (2016)

    Article  ADS  Google Scholar 

  19. C. Winstead, V. McKoy, S. d’A Sanchez, J. Chem. Phys. 127, 085105 (2007)

    Article  ADS  Google Scholar 

  20. H. Estrada, L.S. Cederbaum, W. Domcke, J. Chem. Phys. 84, 152 (1986)

    Article  ADS  Google Scholar 

  21. S. Feuerbacher, T. Sommerfeld, L.S. Cederbaum, J. Chem. Phys. 120, 3201 (2004)

    Article  ADS  Google Scholar 

  22. C. Winstead, V. McKoy, J. Chem. Phys. 125, 244302 (2006)

    Article  ADS  Google Scholar 

  23. A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Phys. B: At. Mol. Opt. Phys. 45, 175203 (2012)

    Article  ADS  Google Scholar 

  24. A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Chem. Phys. 136, 024324 (2012)

    Article  ADS  Google Scholar 

  25. K. Aflatooni, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A 102, 6205 (1998)

    Article  Google Scholar 

  26. J.S. dos Santos, R.F. da Costa, M.T. do N. Varella, J. Chem. Phys. 136, 084307 (2012)

    Article  ADS  Google Scholar 

  27. K. Takatsuka, V. McKoy, Phys. Rev. A 24, 2473 (1981)

    Article  ADS  Google Scholar 

  28. K. Takatsuka, V. McKoy, Phys. Rev. A 30, 1734 (1984)

    Article  ADS  Google Scholar 

  29. M.A.P. Lima, L.M. Brescansin, A.J.R. da Silva, C. Winstead, V. McKoy, Phys. Rev. A 41, 327 (1990)

    Article  ADS  Google Scholar 

  30. M.H.F. Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)

    Article  ADS  Google Scholar 

  31. G.B. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)

    Article  ADS  Google Scholar 

  32. R.F. da Costa, M.T do N. Varella, M.H.F. Bettega, M.A.P. Lima, Eur. Phys. J. D 69, 159 (2015)

    Article  ADS  Google Scholar 

  33. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  34. M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lima, L.G. Ferreira, Int. J. Quantum Chem. 60, 821 (1996)

    Article  Google Scholar 

  35. T.H. Dunning Jr, J. Chem. Phys. 53, 2823 (1970)

    Article  ADS  Google Scholar 

  36. F. Kossoski, M.H.F. Bettega, J. Chem. Phys. 138, 234311 (2013)

    Article  ADS  Google Scholar 

  37. C. Winstead, V. McKoy, Phys. Rev. Lett. 98, 113201 (2007)

    Article  ADS  Google Scholar 

  38. S.W. Staley, T.J. Strnad, J. Phys. Chem. 98, 116 (1994)

    Article  Google Scholar 

  39. J. Grunenberg, J. Am. Chem. Soc. 126, 163101 (2004)

    Article  Google Scholar 

  40. E.M. de Oliveira, T.C. Freitas, K. Coutinho, M.T. do N. Varella, S. Canuto, M.A.P. Lima, M.H.F. Bettega, J. Chem. Phys. 141, 051105 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio d’Almeida Sanchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, F.B., do Nascimento Varella, M.T., Pastega, D.F. et al. Transient negative ion spectrum of the cytosine-guanine pair. Eur. Phys. J. D 71, 92 (2017). https://doi.org/10.1140/epjd/e2017-70786-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70786-5

Keywords

Navigation