Skip to main content
Log in

Atomic structure under external confinement: effect of plasma on the spin orbit splitting, relativistic mass correction and Darwin term for hydrogen-like ions

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of Debye and quantum plasma environment on the structural properties such as spin orbit splitting, relativistic mass correction and Darwin term for a few iso-electronic members of hydrogen viz. C5 +, O7 +, Ne9 +, Mg11 +, Si13 +, S15 +, Ar17 +, Ca19 + and Ti21 + has been analysed systematically for the first time for a range of coupling strengths of the plasma. The Debye plasma environment has been treated under a standard screened Coulomb potential (SCP) while the quantum plasma has been treated under an exponential cosine screened Coulomb potential (ECSCP). Estimation of the spin orbit splitting under SCP and ECSCP plasma is restricted to the lowest two dipole allowed states while for the other two properties, the ground state as well as the first two excited states have been chosen. Calculations have been extended to nuclear charges for which appreciable relativistic corrections are noted. In all cases calculations have been extended up to such screening parameters for which the respective excitation energies tend towards their stability limit determined by the ionisation potential at that screening parameter. Interesting behavior of the respective properties with respect to the plasma coupling strength has been noted.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Akhiezer, I.A. Akhiezer, R.A. Polovin, A.G. Sitenko, K.N. Stepanov, Plasma Electrodynamics: Linear Response Theory, (Pergamon, Oxford, 1975), Vol. 1

  2. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982)

    Article  ADS  Google Scholar 

  3. M.S. Murillo, J. Weisheit, S.B. Hansen, M.W.C. Dharma-wardana, Phys. Rev. E 87, 063113 (2013)

    Article  ADS  Google Scholar 

  4. J.C. Stewart, K.D. Pyatt Jr., Astrophys. J. 144, 1203 (1965)

    Article  ADS  Google Scholar 

  5. A.N. Sil, S. Canuto, P.K. Mukherjee, Adv. Quantum Chem. 58, 115 (2009)

    Article  Google Scholar 

  6. P. Debye, E. Hückel, Z. Phys. 24, 185 (1923)

    Google Scholar 

  7. P.K. Shukla, B. Eliasson, Phys. Lett. A 372, 2897 (2008)

    Article  ADS  Google Scholar 

  8. V.L. Boneh-Bruevich, Sh.M. Kogan, Fiz. Tverd. Tela 1, 1221 (1959) [Engl. transl.: Sov. Phys. Solid State 1, 1118 (1959)]

    Google Scholar 

  9. E.P. Prokopev, Sov. Phys. Solid State 9, 993 (1967)

    Google Scholar 

  10. J.B. Krieger, Phys. Rev. 178, 1337 (1969)

    Article  ADS  Google Scholar 

  11. N. Takimoto, J. Phys. Soc. Jpn 14, 1142 (1959)

    Article  ADS  Google Scholar 

  12. E.C. McIrvine, J. Phys. Soc. Jpn 15, 928 (1960)

    Article  ADS  Google Scholar 

  13. G.L. Hall, Phys. Chem. Solids 23, 1147 (1962)

    Article  ADS  Google Scholar 

  14. A.E.S. Green, Phys. Rev. 75, 1926 (1949)

    Article  ADS  Google Scholar 

  15. G.M. Harris, Phys. Rev. 125, 1131 (1962)

    Article  ADS  Google Scholar 

  16. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  17. T. Ramazanov, K. Galiyev, K.N. Dzhumagulova, G. Röpke, R. Redmer, Contrib. Plasma Phys. 43, 39 (2003)

    Article  ADS  Google Scholar 

  18. S.C. Na, Y.D. Yung, Phys. Lett. A 372, 5605 (2008)

    Article  ADS  Google Scholar 

  19. S.C. Na, Y.D. Yung, Phys. Scr. 78, 035502 (2008)

    Article  ADS  Google Scholar 

  20. A. Ghoshal, Y.K. Ho, J. Phys. B: At. Mol. Opt. Phys. 42, 075002 (2009)

    Article  ADS  Google Scholar 

  21. A. Ghoshal, Y.K. Ho, Phys. Rev. A 79, 062514 (2009)

    Article  ADS  Google Scholar 

  22. L.U. Ancarani, K.V. Rodriguez, Phys. Rev. A 89, 012507 (2014)

    Article  ADS  Google Scholar 

  23. Y.C. Lin, C.Y. Lin, Y.K. Ho, Int. J. Quantum Chem. 115, 830 (2015)

    Article  Google Scholar 

  24. C.Y. Lin, Y.K. Ho, Eur. Phys. J. D 57, 21 (2010)

    Article  ADS  Google Scholar 

  25. S. Paul, Y.K. Ho, Comp. Phys. Comm. 182, 130 (2011)

    Article  ADS  Google Scholar 

  26. H.F. Lai, Y.C. Lin, C.Y. Lin, Y.K. Ho, Chinese J. Phys. 51, 73 (2013)

    Google Scholar 

  27. L. Zhang, X. Qi, X. Zhao, X. Zhang, G. Xiao, W. Duan, L. Yang, Phys. Scr. 89, 085402 (2014)

    Article  ADS  Google Scholar 

  28. S. Lumb, S. Lumb, V. Prasad, Phys. Rev. A 90, 032505 (2014)

    Article  ADS  Google Scholar 

  29. Z. Jiang, Y. Zhang, S. Kar, Phys. Plasmas 22, 052105 (2015)

    Article  ADS  Google Scholar 

  30. L. Modesto-Costa, S. Canuto, P.K. Mukherjee, Phys. Plasmas 22, 032902 (2015)

    Article  ADS  Google Scholar 

  31. S.K. Chaudhuri, L. Modesto-Costa, P.K. Mukherjee, Phys. Plasmas 23, 053305 (2016)

    Article  ADS  Google Scholar 

  32. A. Poszwa, M.K. Bahar, Phys. Plasmas 22, 012104 (2015)

    Article  ADS  Google Scholar 

  33. M. De, D. Ray, Phys. Plasmas 22, 054503 (2015)

    Article  ADS  Google Scholar 

  34. P.O. Löwdin, P.K. Mukherjee, Chem. Phys. Lett. 14, 1 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Ray, B. Kundu, P.K. Mukherjee, Phys. Rev. A 35, 980 (1987)

    Article  ADS  Google Scholar 

  36. B. Kundu, P.K. Mukherjee, Phys. Rev. A 35, 980 (1987)

    Article  ADS  Google Scholar 

  37. E.U. Condon, G.H. Shortley, The Theory of Atomic Spectra (Cambridge, 1959)

  38. G. Baym, Lectures on Quantum Mechanics (W.A. Benjamin, INC, 1976), p. 560

  39. D.K. Bradley, J. Kilkenny, S.J. Rose, J.D. Hares, Phys. Rev. Lett. 59, 2995 (1987)

    Article  ADS  Google Scholar 

  40. S. Bashkin, J.O. Stoner Jr., Atomic Energy Levels and Grottrian Diagrams (North Holland, Amsterdam, 1975), Vol. 1 and 2

  41. M. Nantel, G. Ma, S. Gu, C.Y. Cote, J. Itatani, D. Umstadter, Phys. Rev. Lett. 80, 4442 (1998)

    Article  ADS  Google Scholar 

  42. N.C. Woolsey, B.A. Hammel, C.J. Keane, C.A. Back, J.C. Moreno, J.K. Nash, A. Calisti, C. Mosse, R. Stamm, B. Talin, A. Asfaw, L.S. Klein, R.W. Lee, Phys. Rev. E 57, 4650 (1998)

    Article  ADS  Google Scholar 

  43. A. Saemann, K. Eidmann, I.E. Golovkin, R.C. Mancini, E. Andersson, E. Forster, K. Witte, Phys. Rev. Lett. 82, 4843 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhuri, S.K., Mukherjee, P.K. & Fricke, B. Atomic structure under external confinement: effect of plasma on the spin orbit splitting, relativistic mass correction and Darwin term for hydrogen-like ions. Eur. Phys. J. D 71, 71 (2017). https://doi.org/10.1140/epjd/e2017-70511-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70511-6

Keywords

Navigation