Skip to main content

Advertisement

Log in

Controlling energy flux into a spatially correlated environment via quantum coherence

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We consider two two-level atoms interacting with a vacuum electromagnetic (EM) field. We study the effects of initial correlations and quantum coherence on the energy flux of two atoms into a spatially correlated environment, and we find that quantum coherence plays a decisive role in the energy flux dynamics. And by manipulating the relative phase, we can control the initial value of the energy flux, the speed of energy release in different stages of the dynamics and the release time of the energy of two atoms. Furthermore, we study the energy flux dynamics of one of the two atoms, and the other atom as an auxiliary atom, and then the atom we concern can be considered to be coupled to a structured bath (auxiliary atom + EM field). Based on this, we find that by manipulating the relative phase, we can control the initial direction of the energy flow between the atom concerned and the structure bath, and the energy backflow during the time evolution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  2. B.W. Lovett, J.H. Reina, A. Nazir, G.A.D. Briggs, Phys. Rev. B 68, 205319 (2003)

    Article  ADS  Google Scholar 

  3. K. Fujii, K. Yamamoto, Phys. Rev. A 82, 042109 (2010)

    Article  ADS  Google Scholar 

  4. S.K. Sekatskii, M. Chergui, G. Dietler, Europhys. Lett. 63, 21 (2003)

    Article  ADS  Google Scholar 

  5. L.G.C. Rego, G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998)

    Article  ADS  Google Scholar 

  6. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes, Nature 404, 974 (2000)

    Article  ADS  Google Scholar 

  7. J. Gong, D. Poletti, P. Hanggi, Phys. Rev. A 75, 033602 (2007)

    Article  ADS  Google Scholar 

  8. B. Leggio, R. Messina, M. Antezza, Europhys. Lett. 110, 40002 (2015)

    Article  ADS  Google Scholar 

  9. J.S. Briggs, A. Eisfeld, Phys. Rev. E 83, 051911 (2011)

    Article  ADS  Google Scholar 

  10. G.-F. Zhang, Eur. Phys. J. D 49, 123 (2008)

    Article  ADS  Google Scholar 

  11. H. Li, J. Zou, W.-L. Yu, L. Li, B.-M. Xu, B. Shao, Eur. Phys. J. D 67, 134 (2013)

    Article  ADS  Google Scholar 

  12. L.-A. Wu, D. Segal, Phys. Rev. E 77, 060101 (2008)

    Article  ADS  Google Scholar 

  13. L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  14. J. Jing, D. Segal, B. Li, L.-A. Wu, Sci. Rep. 5, 15332 (2015)

    Article  ADS  Google Scholar 

  15. D. Segal, Phys. Rev. B 73, 205415 (2006)

    Article  ADS  Google Scholar 

  16. T. Chen, X.-B. Wang, J. Ren, Phys. Rev. B 87, 144303 (2013)

    Article  ADS  Google Scholar 

  17. A. Bérut, A. Petrosyan, S. Ciliberto, Europhys. Lett. 107, 60004 (2014)

    Article  Google Scholar 

  18. E. Boukobza, D.J. Tannor, Phys. Rev. A 74, 063823 (2006)

    Article  ADS  Google Scholar 

  19. A.A. Valido, A. Ruiz, A. Daniel, Phys. Rev. E 91, 062123 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Lorenzo, A. Farace, F. Ciccarello, G.M. Palma, V. Giovannetti, Phys. Rev. A 91, 022121 (2015)

    Article  ADS  Google Scholar 

  21. S. Oviedo-Casado, J. Prior, A.W. Chin, R. Rosenbach, S.F. Huelga, M.B. Plenio, Phys. Rev. A 93, 020102 (2016)

    Article  ADS  Google Scholar 

  22. T.R. Bromley, M. Cianciaruso, G. Adesso, Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  23. A. Streltsov, U. Singh, H.S. Dhar, M.N. Bera, G. Adesso, Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. F. Levi, F. Mintert, New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  25. L.-H. Shao, Z. Xi, H. Fan, Y. Li, Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  26. Y. Yao, X. Xiao, L. Ge, C.-P. Sun, Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  27. H. Li, J. Zou, W.-L. Yu, B.-M. Xu, J.-G. Li, B. Shao, Phys. Rev. E 89, 052132 (2014)

    Article  ADS  Google Scholar 

  28. M.-L. Hu, H. Fan, Sci. Rep. 6, 29260 (2016)

    Article  ADS  Google Scholar 

  29. J.-X. Han, Y. Hu, Y. Jin, G.-F. Zhang, J. Chem. Phys. 144, 134308 (2016)

    Article  ADS  Google Scholar 

  30. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  31. R.H. Lehmberg, Phys. Rev. A 2, 883 (1970)

    Article  ADS  Google Scholar 

  32. R.H. Lehmberg, Phys. Rev. A 2, 889 (1970)

    Article  ADS  Google Scholar 

  33. G.S. Agarwal, Quantum statistical theories of spontaneous emission and their relation to other approaches, in Springer Tracts in Modern Physics (Springer, 1974), Vol. 70

  34. Z. Ficek, S. Swain, Quantum Interference and Coherence: Theory and Experiments (Springer, 2005)

  35. M.B. Plenio, S.F. Huelga, A. Beige, P.L. Knight, Phys. Rev. A 59, 2468 (1999)

    Article  ADS  Google Scholar 

  36. G.K. Brennen, I.H. Deutsch, P.S. Jessen, Phys. Rev. A 61, 062309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. U. Akram, Z. Ficek, S. Swain, Phys. Rev. A 62, 013413 (2000)

    Article  ADS  Google Scholar 

  38. Z. Ficek, R. Tanaś, Phys. Rep. 372, 369 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  39. Z. Ficek, R. Tanaś, Phys. Rev. A 74, 024304 (2006)

    Article  ADS  Google Scholar 

  40. R.G. DeVoe, R.G. Brewer, Phys. Rev. Lett. 76, 2049 (1996)

    Article  ADS  Google Scholar 

  41. R. Alicki, J. Phys. A 12, L103 (1979)

    Article  ADS  Google Scholar 

  42. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  43. C.-Z. Wang, C.-X. Li, L.-Y. Nie, J.-F. Li, J. Phys. B 44, 015503 (2011)

    Article  ADS  Google Scholar 

  44. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zou, J., Li, H. et al. Controlling energy flux into a spatially correlated environment via quantum coherence. Eur. Phys. J. D 71, 62 (2017). https://doi.org/10.1140/epjd/e2016-70476-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70476-x

Keywords

Navigation