Skip to main content
Log in

Fast all-optical nuclear spin echo technique based on EIT

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We demonstrate an all-optical Raman spin echo technique, using electromagnetically induced transparency (EIT) to create the pulses required for a spin echo sequence: initialization, pi-rotation, and readout. The first pulse of the sequence induces coherence directly from a mixed state, and the technique is used to measure the nuclear spin coherence of an inhomogeneously broadened ensemble of rare-earth ions (Pr3 +) in a crystal. The rephasing pi-rotation is shown to offer an advantage of combining the rephasing action with the operation of a phase gate, particularly useful in e.g. dynamic decoupling sequences. In contrast to many previous experiments the sequence does not require any preparatory hole burning, which greatly shortens the total duration of the sequence. The effect of the different pulses is characterized by quantum state tomography and compared with simulations. We demonstrate two applications of the technique: compensating the magnetic field across our sample by monitoring T 2 reductions from stray magnetic fields, and measuring coherence times at temperatures up to 11 K, where standard preparation techniques are difficult to implement. We explore the potential of the technique, in particular for systems with much shorter T 2, and other possible applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Kimble, Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  2. Hoi-Kwong Lo, Marcos Curty, Kiyoshi Tamaki, Nat. Photon. 8, 595 (2014)

    Article  ADS  Google Scholar 

  3. I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  4. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O/’Brien, Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  5. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Mater. 8, 383 (2009)

    Article  ADS  Google Scholar 

  6. W.F. Koehl, B.B. Buckley, F.J. Heremans, G. Calusine, D.D. Awschalom, Nature 479, 84 (2011)

    Article  ADS  Google Scholar 

  7. M. Zhong, M.P. Hedges, R.L. Ahlefeldt, J.G. Bartholomew, S.E. Beavan, S.M. Wittig, J.J. Longdell, M.J. Sellars, Nature 517, 177 (2015)

    Article  ADS  Google Scholar 

  8. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  9. C.G. Yale, B.B. Buckley, D.J. Christle, G. Burkard, F.J. Heremans, L.C. Bassett, D.D. Awschalom, Proc. Natl. Acad. Sci. 110, 7595 (2013)

    Article  ADS  Google Scholar 

  10. B.S. Ham, M.S. Shahriar, M.K. Kim, P.R. Hemmer, Phys. Rev. B 58, R11825 (1998)

    Article  ADS  Google Scholar 

  11. A. Louchet, Y. Le Du, T. Brouri, F. Bretenaker, T. Chanelière, F. Goldfarb, I. Lorgeré, J.-L. Le Gouët, Solid State Sci. 10, 1374 (2008)

    Article  ADS  Google Scholar 

  12. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  13. A. Walther, L. Rippe, Y. Yan, J. Karlsson, D. Serrano, A.N. Nilsson, S. Bengtsson, S. Kröll, Phys. Rev. A 92, 022319 (2015)

    Article  ADS  Google Scholar 

  14. E. Fraval, M.J. Sellars, J.J. Longdell, Phys. Rev. Lett. 95, 030506 (2005)

    Article  ADS  Google Scholar 

  15. A. Imamoglu, J.E. Field, S.E. Harris, Phys. Rev. Lett. 66, 1154 (1991)

    Article  ADS  Google Scholar 

  16. L. Rippe, B. Julsgaard, A. Walther, Yan Ying, S. Kröll, Phys. Rev. A 77, 022307 (2008)

    Article  ADS  Google Scholar 

  17. A. Amari, A. Walther, M. Sabooni, M. Huang, S. Kröll, M. Afzelius, I. Usmani, B. Lauritzen, N. Sangouard, H. de Riedmatten, N. Gisin, J. Luminescence 130, 1579 (2010)

    Article  ADS  Google Scholar 

  18. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, United Kingdom, 2000) Eq. 8.148, Chap. 8.4.2.

  19. G. Heinze, S. Mieth, T. Halfmann, Phys. Rev. A 84, 013827 (2011)

    Article  ADS  Google Scholar 

  20. J.J. Longdell, M.J. Sellars, N.B. Manson, Phys. Rev. B 66, 035101 (2002)

    Article  ADS  Google Scholar 

  21. B.S. Ham, M.S. Shahriar, M.K. Kim, P.R. Hemmer, Opt. Lett. 22, 1849 (1997)

    Article  ADS  Google Scholar 

  22. D.E. McCumber, M.D. Sturge, J. Appl. Phys. 34, 1682 (1963)

    Article  ADS  Google Scholar 

  23. Y.S. Bai, R. Kachru, Phys. Rev. B 46, 13735 (1992)

    Article  ADS  Google Scholar 

  24. F. Könz, Y. Sun, C.W. Thiel, R.L. Cone, R.W. Equall, R.L. Hutcheson, R.M. Macfarlane, Phys. Rev. B 68, 085109 (2003)

    Article  ADS  Google Scholar 

  25. A. Arcangeli, R.M. Macfarlane, A. Ferrier, P. Goldner, Phys. Rev. B 92, 224401 (2015)

    Article  ADS  Google Scholar 

  26. R.C. Hilborn, Am. J. Phys. 50, 982 (1982)

    Article  ADS  Google Scholar 

  27. P.R. Berman, Phys. Rev. A 72, 035801 (2005)

    Article  ADS  Google Scholar 

  28. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, United Kingdom, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Walther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walther, A., Nilsson, A., Li, Q. et al. Fast all-optical nuclear spin echo technique based on EIT. Eur. Phys. J. D 70, 166 (2016). https://doi.org/10.1140/epjd/e2016-60716-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60716-6

Keywords

Navigation