Skip to main content
Log in

Precise measurement of magnetic field gradients from free spin precession signals of 3He and 129Xe magnetometers

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3He and 129Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LT C SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to be | B z | = (5.6 ± 0.2) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Gemmel, W. Heil, S. Karpuk, K. Lenz, Ch. Ludwig, Yu. Sobolev, K. Tullney, M. Burghoff, W. Kilian, S. Knappe-Grüneberg, W. Müller, A. Schnabel, F. Seifert, L. Trahms, St. Baessler, Eur. Phys. J. D 57, 303 (2010)

    Article  ADS  Google Scholar 

  2. H.-Ch. Koch, G. Bison, Z. Grujić, W. Heil, M. Kasprzak, P. Knowles, A. Kraft, A. Pazgalev, A. Schnabel, J. Voigt, A. Weis, Eur. Phys. J. D 69, 262 (2015)

    Article  ADS  Google Scholar 

  3. A. Nikiel, P. Blümler, W. Heil, M. Hehn, S. Karpuk, A. Maul, E. Otten, L. Schreiber, M. Terekhov, Phys. J. D 68, 330 (2014)

    ADS  Google Scholar 

  4. L.D. Schearer, F.D. Colegrove, G.K. Walters, Phys. Rev. Lett. 10, 108 (1963)

    Article  ADS  Google Scholar 

  5. E. Courtade, F. Marion, P.-J. Nacher, G. Tastevin, K. Kiersnowski, T. Dohnalik, Eur. Phys. J. D 21, 25 (2002)

    Article  ADS  Google Scholar 

  6. T. Walker, W. Happer, Rev. Mod. Phys. 69, 629 (1997)

    Article  ADS  Google Scholar 

  7. P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants (2014)

  8. P.W. Anderson, J. Phys. Soc. Jpn 9, 316 (1954)

    Article  ADS  Google Scholar 

  9. G.D. Cates, S.R. Schaefer, W. Happer, Phys. Rev. A 37, 8 (1988)

    Article  Google Scholar 

  10. J.M. Pendlebury, W. Heil, Yu. Sobolev, P.G. Harris, J.D. Richardson, R.J. Baskin, D.D. Doyle, P. Geltenbort, K. Green, M.G.D. van der Grinten, P.S. Iaydjiev, S.N. Ivanov, D.J.R. May, K.F. Smith, Phys. Rev. A 70, 032102 (2004)

    Article  ADS  Google Scholar 

  11. S. Afach et al., Phys. Rev. Lett. 115, 162502 (2015)

    Article  ADS  Google Scholar 

  12. W. Heil, C. Gemmel, S. Karpuk, Y. Sobolev, K. Tullney, F. Allmendinger, U. Schmidt, M. Burghoff, W. Kilian, S. Knappe-Grüneberg, A. Schnabel, F. Seifert, L. Trahms, Ann. Phys. (Berlin) 525, 539 (2013)

    Article  ADS  Google Scholar 

  13. F. Allmendinger, W. Heil, S. Karpuk, W. Kilian, A. Scharth, U. Schmidt, A. Schnabel, Yu. Sobolev, K. Tullney, Phys. Rev. Lett. 112, 110801 (2014)

    Article  ADS  Google Scholar 

  14. J. Bork, H.-D. Hahlbohm, R. Klein, A. Schnabel, Proc. Biomag 2000, 970 (2000)

    Google Scholar 

  15. F. Thiel, A. Schnabel, S. Knappe-Grüneberg, D. Stollfuß, M. Burghoff, Rev. Sci. Instrum. 78, 035106 (2007)

    Article  ADS  Google Scholar 

  16. K. Tullney, F. Allmendinger, M. Burghoff, W. Heil, S. Karpuk, W. Kilian, S. Knappe-Grüneberg, W. Müller, U. Schmidt, A. Schnabel, F. Seifert, Yu. Sobolev, L. Trahms, Phys. Rev. Lett. 111, 100801 (2013)

    Article  ADS  Google Scholar 

  17. International Council for Science: Committee on Data for Science and Technology (CODATA), www.codata.org (2007)

  18. R. Mair, D. Hoffmann, S. Sheth, G. Wong, J. Butler, S. Patz, G. Topulos, R. Walsworth, NMR Biomed. 13, 229 (2000) and references therein

    Article  Google Scholar 

  19. R. Barbé, M. Leduc, F. Laloë, J. Phys. France 35, 935 (1974)

    Article  Google Scholar 

  20. R.H. Acosta, L. Agulles-Pedrós, S. Komin, D. Sebastiani, H.W. Spiess, P. Blümler, Phys. Chem. Chem. Phys. 8, 4182 (2006)

    Article  Google Scholar 

  21. W. Hogervorst, Physica 51, 59 (1971)

    Article  ADS  Google Scholar 

  22. T.R. Marrero, J. Phys. Chem. Ref. Data 1, 3 (1972)

    Article  ADS  Google Scholar 

  23. A.P. Malinauskas, J. Chem. Phys. 42, 156 (1965)

    Article  ADS  Google Scholar 

  24. K.P. Srivastava, Physica 25, 571 (1959)

    Article  ADS  Google Scholar 

  25. R.D. Trengove, P.J. Dunlop, Physica A 115, 339 (1982)

    Article  ADS  Google Scholar 

  26. M. Repetto, E. Babcock, P. Blümler, W. Heil, S. Karpuk, K. Tullney, J. Magn. Reson. 252, 63 (2015)

    Article  Google Scholar 

  27. M. Repetto, S. Zimmer, F. Allmendinger, P. Blümler, M. Doll, J.O. Grasdijk, W. Heil, K. Jungmann, S. Karpuk, H.-J. Krause, A. Offenhäusser, U. Schmidt, Y. Sobolev, L. Willmann, J. Magn. Reson. 265, 197 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Allmendinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allmendinger, F., Blümler, P., Doll, M. et al. Precise measurement of magnetic field gradients from free spin precession signals of 3He and 129Xe magnetometers. Eur. Phys. J. D 71, 98 (2017). https://doi.org/10.1140/epjd/e2017-70505-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70505-4

Keywords

Navigation