Skip to main content

Advertisement

Log in

Experimental observation of the ion energy spectra of Al, Co, and Cu laser produced plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

It is well known that nanosecond laser produced plasmas (LPPs) produce high kinetic energy ions when they expand to vacuum. The acceleration process is nowadays accepted to be due to the formation of a sharp double layer (DL) in the plasma-vacuum boundary. With the purpose of studying this acceleration process, kinetic energy spectra of the plasma ions are measured for each charge state separately. Experimental results are obtained by irradiating planar targets of Cu, Co and Al at a laser wavelength of 532 nm and fluences up to 58.1 J cm-2. The obtained results show two new insights in the ion energy spectra. Firstly, they are non-maxwellian despite the widely accepted local thermal equilibrium in these type of plasmas. Secondly they show non-expected bicomponents distributions. The average energy of each species does not vary linearly with the charge state, suggesting complex acceleration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994)

  2. H.G. Rubahn, Laser Applications in Surface Science and Technology (Wiley, 1996)

  3. J.R. Freeman, S. Harilal, T. Sizyuk, A. Hassanein, B. Rice, in SPIE Proceedings 0277786X, edited by P.P. Naulleau, O.R. Wood II, 8322, 83220H (SPIE, 2012)

  4. F. Brunel, Phys. Rev. Lett. 59, 6 (1987)

    Article  Google Scholar 

  5. S. Eliezer, H. Hora, Phys. Rep. 172, 339 (1989)

    Article  ADS  Google Scholar 

  6. D. Umstadter, J. Phys. D 36, R151 (2003)

    Article  ADS  Google Scholar 

  7. S. Wilks, W. Kruer, M. Tabak, A. Langdon, Phys. Rev. Lett. 69, 1383 (1992)

    Article  ADS  Google Scholar 

  8. T. Fujimoto, in Plasma Spectroscopy (Springer, 2008), p. 29

  9. T. Efthimiopoulos, D. Dogas, I. Palli, C. Gravalidis, M. Campbell, Appl. Phys. A 71, 325 (2000)

    Article  ADS  Google Scholar 

  10. M.M. Polek, S. Harilal, A. Hassanein, Appl. Opt. 51, 498 (2012)

    Article  ADS  Google Scholar 

  11. J. Apinaniz, R. Martinez, Plasma Sci. IEEE Trans. Plasma Sci. 39, 2928 (2011)

    Article  ADS  Google Scholar 

  12. L.P. Block, Astrophys. Space Sci. 55, 59 (1978)

    Article  ADS  Google Scholar 

  13. J.E. Crow, P.L. Auer, J.E. Allen, J. Plasma Phys. 14, 65 (1975)

    Article  ADS  Google Scholar 

  14. P. Mora, Phys. Rev. Lett. 90, 185002 (2003)

    Article  ADS  Google Scholar 

  15. N.M. Bulgakova, A.V. Bulgakov, O.F. Bobrenok, Phys. Rev. E 62, 5624 (2000)

    Article  ADS  Google Scholar 

  16. F. Caridi, L. Torrisi, L. Giuffrida, Nucl. Instrum. Methods Phys. Res. B 268, 499 (2010)

    Article  ADS  Google Scholar 

  17. J.I. Apiñaniz, B. Sierra, R. Martínez, A. Longarte, C. Redondo, F. Castaño, J. Phys. Chem. C 112, 16556 (2008)

    Article  Google Scholar 

  18. J. Apinaniz, J.I. Apiñaniz, F.J. Gordillo-Vázquez, R. Martínez, Plasma Sources Sci. Tech. 21, 015016 (2012)

    Article  ADS  Google Scholar 

  19. Handbook of Chemistry and Physics”, edited by D.R. Lide (CRC Press, Boca Raton, FL, 2005)

  20. M.N. Saha, Philos. Mag. Ser. 6 40, 472 (1920)

    Article  Google Scholar 

  21. M.N. Saha, Proc. R. Soc. A Math. Phys. Eng. Sci. 99, 135 (1921)

    Article  ADS  Google Scholar 

  22. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B At. Spectrosc. 65, 86 (2010)

    Article  ADS  Google Scholar 

  23. T. Fujimoto, R.W.P. McWhirter, Phys. Rev. A 42, 6588 (1990)

    Article  ADS  Google Scholar 

  24. N. Gambino, Ph.D. thesis, 2010

  25. D. Colombant, G.F. Tonon, J. Appl. Phys. 44, 3524 (1973)

    Article  ADS  Google Scholar 

  26. S. Harilal, B. O’Shay, M.S. Tillack, M.V. Mathew, J. Appl. Phys. 98, 13306 (2005)

    Article  ADS  Google Scholar 

  27. J.I. Apinaniz, R. Martinez, IEEE Trans. Plasma Sci. 39, 2928 (2011)

    Article  ADS  Google Scholar 

  28. Xianfan Xu, D.A. Willis, J. Heat Transfer 124, 293 (2002)

    Article  Google Scholar 

  29. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 77, 199 (2001)

    Article  ADS  Google Scholar 

  30. A. Miotello, R. Kelly, Appl. Phys. A 69, 567 (1999)

    Article  Google Scholar 

  31. Xianfan Xu, K.H. Song, Mater. Sci. Eng. A 292, 162 (2000)

    Article  Google Scholar 

  32. Xianfan Xu, J. Heat Transfer. 124, 293 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Imanol Apiñaniz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apiñaniz, J., Peralta Conde, A. & Martínez Perez de Mendiola, R. Experimental observation of the ion energy spectra of Al, Co, and Cu laser produced plasmas. Eur. Phys. J. D 69, 265 (2015). https://doi.org/10.1140/epjd/e2015-60109-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60109-5

Keywords

Navigation