Skip to main content
Log in

Extensive ab initio calculation on low-lying excited states of SiN+ cation including spin-orbit coupling

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electronic structures and transition properties of the SiN+ molecule are investigated by performing ab initio calculations based on scalar relativistic multireference configuration interaction (MRCI) method plus Davidson correction (+Q). The potential energy curves (PECs) for the 22 Λ-S electronic states of the SiN+ are obtained. The spectroscopic constants of the bound states are determined, where good agreements with the available spectroscopic data are achieved. Spin-orbit coupling (SOC) effect is introduced via the state interaction approach with the full Breit-Pauli Hamiltonian operator for the state X3 Σ , a 3 Π, 5 Σ and 5 Π. This is the first time that SOC calculation has been carried out on the SiN+. The four states split into 15 Ω states after the consideration of the SOC effect. The SOC effect, leading to some avoided crossings, is found to be substantial for the SiN+. Moreover, the transition dipole moments (TDMs) and Franck-Condon factors are derived. Finally, the corresponding radiative lifetimes of the a 3 Π 1 state are evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Jevons, Proc. R. Soc. London Ser. A 89, 187 (1913)

    Article  ADS  Google Scholar 

  2. R.S. Mulliken, Phys. Rev. 26, 319 (1925)

    Article  ADS  Google Scholar 

  3. C. Linton, J. Mol. Spectrosc. 55, 108 (1975)

    Article  ADS  Google Scholar 

  4. S. Saito, Y. Endo, E. Hirota, J. Chem. Phys. 78, 6447 (1983)

    Article  ADS  Google Scholar 

  5. S.C. Foster, J. Mol. Spectrosc. 106, 369 (1984)

    Article  ADS  Google Scholar 

  6. S.C. Foster, K.G. Lubic, T. Amano, J. Chem. Phys. 82, 709 (1985)

    Article  ADS  Google Scholar 

  7. C. Yamada, E. Hirota, J. Chem. Phys. 82, 2547 (1985)

    Article  ADS  Google Scholar 

  8. C. Yamada, E. Hirota, S. Yamamoto, S. Saito, J. Chem. Phys. 88, 46 (1988)

    Article  ADS  Google Scholar 

  9. H. Ito, K. Suzuki, T. Kondow, K. Kuchitsu, Chem. Phys. Lett. 208, 328 (1993)

    Article  ADS  Google Scholar 

  10. C. Naulin, M. Costes, Z. Moudden, N. Ghanem, G. Dorthe, Chem. Phys. Lett. 202, 452 (1993)

    Article  ADS  Google Scholar 

  11. Z.L. Cai, J.M. Martin, J.P. François, J. Mol. Spectrosc. 188, 27 (1998)

    Article  ADS  Google Scholar 

  12. I.S. Kerkines, A. Mavridis, J. Chem. Phys. 123, 124301 (2005)

    Article  ADS  Google Scholar 

  13. P.J. Bruna, S.D. Peyerimhoff, R.J. Buenker, J. Chem. Phys. 72, 5437 (1980)

    Article  ADS  Google Scholar 

  14. N. Goldberg, M. Iraqi, H. Schwarz, A. Boldyrev, J. Simons, J. Chem. Phys. 101, 2871 (1994)

    Article  ADS  Google Scholar 

  15. Z.L. Cai, J.P. François, Chem. Phys. Lett. 300, 69 (1999)

    Article  ADS  Google Scholar 

  16. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklaß, D.P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO2010, a package of ab initio programs, http://www.molpro.net (2010)

  17. P.J. Knowles, H.J. Werner, Chem. Phys. Lett. 115, 259 (1985)

    Article  ADS  Google Scholar 

  18. H.J. Werner, P.J. Knowles, J. Chem. Phys. 82, 5053 (1985)

    Article  ADS  Google Scholar 

  19. P.J. Knowles, H.J. Werner, Chem. Phys. Lett. 145, 514 (1988)

    Article  ADS  Google Scholar 

  20. H.J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  ADS  Google Scholar 

  21. J. von Neumann, E.P. Wigner, Z. Phys. 30, 467 (1929)

    MATH  Google Scholar 

  22. F. Hund, Z. Phys. 40, 742 (1927)

    Article  ADS  MathSciNet  Google Scholar 

  23. R.J. Le Roy, Level 7.0: A computer program for solving the radial Schrödinger equation for bound and quasibound levels, University of Waterloo Chemical Physics Research Report CP-663, http://scienide2.uwaterloo.ca/˜rleroy/level/

  24. C.E. Moore, Atomic Energy Levels as Derived from the Analysis of Optical Spectra (NSRDS, Washington DC, 1971)

  25. W. Zou, W. Liu, J. Comput. Chem. 26, 106 (2005)

    Article  Google Scholar 

  26. H. Okabe, Photochemistry of Small Molecules (Wiley-Interscience, New York, 1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuFang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhai, H. & Liu, Y. Extensive ab initio calculation on low-lying excited states of SiN+ cation including spin-orbit coupling. Eur. Phys. J. D 69, 59 (2015). https://doi.org/10.1140/epjd/e2015-50584-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50584-y

Keywords

Navigation