Skip to main content
Log in

Theoretical studies of the EPR parameters and local structures for Cu2+ centres in a (CH3)2NH2Al(SO4)2·6H2O crystal

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Local structure and electron paramagnetic resonance (EPR) parameters (the g factors, g i , and the hyperfine structure constants A i , i = x, y, z) for the impurity Cu2+ centres in a (CH3)2NH2Al(SO4)2·6H2O (DMAAS) crystal are theoretically investigated by using the high-order perturbation formulas of these parameters for a 3d 9 ion in an orthorhombically elongated octahedron. The related molecular orbital coefficients are quantitatively determined from the cluster approach in a uniform way. From the studies, the four planar Cu2+-O2− bond lengths are found to experience the relative variation δR ( ≈0.033 and 0.063 Å) along the X- and Y-axes, while the two parallel bond lengths may undergo relative elongation ΔZ (≈0.058 and 0.052 Å) along the C 2 axis for the studied Cu2+ centres I and II, respectively, due to the Jahn-Teller effect. The theoretical EPR parameters based on the above local lattice distortions agree well with the experimental data. The results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Völkel, N. Alsabbagh, R. Böttcher, D. Michel, B. Milsch, Z. Czapla, J. Furtak, J. Phys.: Condens. Matter 12, 4553 (2000)

    ADS  Google Scholar 

  2. V. Kapustianyk, V. Rudyk, Y.U. Korchak, A. Batiuk, B. Kulyk, Z. Czapla, Ferroelectrics 317, 7 (2005)

    Article  Google Scholar 

  3. V. Kapustianik, Z. Czapla, R. Tchukvinskyi, A. Batiuk, Yu. Eliyachevskyy, Yu. Korchak, V. Rudyk, Phys. Stat. Sol. A 201, 139 (2004)

    Article  ADS  Google Scholar 

  4. R. Sobiestianskas, J. Grigas, V. Samulionis, E.F. Andreyev, Phase Transition 29, 167 (1991)

    Article  Google Scholar 

  5. V.Yu. Kazimirov, V.A. Sarin, M.B. Smirnov, L.A. Shuvalov, Ferroelectrics 299, 59 (2004)

    Article  Google Scholar 

  6. W. Bednarski, S. Waplak, L.F. Kirpichnikova, J. Phys. Chem. Solids 60, 1669 (1999)

    Article  ADS  Google Scholar 

  7. S.O. Graham, R.L. White, Phys. Rev. B 10, 4505 (1974)

    Article  ADS  Google Scholar 

  8. Y.V. Yablokov, T.A. Ivanova, Coordination Chem. Rev. 190-192, 1255 (1999)

    Article  Google Scholar 

  9. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford 1970)

  10. A.S. Chakravarty, Introduction to the Magnetic Properties of Solids (Wiley-Interscience Publication, New York, 1980)

  11. S.Y. Wu, L.H. Wei, Z.H. Zhang, X.F. Wang, Spectrochim. Acta A 71, 2023 (2009)

    Article  ADS  Google Scholar 

  12. S.Y. Wu, X.Y. Gao, H.N. Dong, J. Magn. Magn. Mater. 301, 67 (2006)

    Article  ADS  Google Scholar 

  13. H.M. Zhang, S.Y. Wu, M.Q. Kuang, Z.H. Zhang, J. Phys. Chem. Solids 73, 846 (2012)

    Article  ADS  Google Scholar 

  14. B.R. McGarvey, J. Phys. Chem. 71, 51 (1967)

    Article  Google Scholar 

  15. D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989)

    Article  ADS  Google Scholar 

  16. C. Rudowicz, Z.Y. Yang, Y.Y. Yueng, J. Qin, J. Phys. Chem. Solids 64, 1419 (2003)

    Article  ADS  Google Scholar 

  17. H.N. Dong, Z. Naturforsch 60a, 615 (2005)

    Google Scholar 

  18. W.Q. Yang, L. He, H.G. Liu, W.C. Zheng, Phys. Stat. Sol. B 246, 1915 (2009)

    Article  ADS  Google Scholar 

  19. E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963)

    Article  ADS  Google Scholar 

  20. E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967)

    Article  ADS  Google Scholar 

  21. H.M. Zhang, X. Wan, J. Non-Cryst. Solids 361, 43 (2013)

    Article  ADS  Google Scholar 

  22. W.C. Zheng, Y. Mei, Y.G. Yang, H.G. Liu, Philos. Mag. 92, 760 (2012)

    Article  ADS  Google Scholar 

  23. M.A. Hitchman, T.D. Waite, Inorg. Chem. 15, 2150 (1976)

    Article  Google Scholar 

  24. W.L. Feng, W.Q. Yang, W.C. Zheng, H.G. Liu, Physica B 405, 2018 (2010)

    Article  ADS  Google Scholar 

  25. C. Rudowicz, Z.Y. Yang, Y.Y. Yeung, J. Qin, J. Phys. Chem. Solids 64, 1419 (2003)

    Article  ADS  Google Scholar 

  26. J.S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1964)

  27. M.L. Du, C. Rudowicz, Phys. Rev. B 46, 8974 (1992)

    Article  ADS  Google Scholar 

  28. B. Karabulut, A. Tufan, Spectrochim. Acta A 65, 285 (2006)

    Article  ADS  Google Scholar 

  29. R. Kripal, D.K. Singh, Spectrochim. Acta A 67, 815 (2007)

    Article  ADS  Google Scholar 

  30. W.L. Feng, W.C. Zheng, Mol. Phys. 112, 85 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HM., Xiao, WB. & Wan, X. Theoretical studies of the EPR parameters and local structures for Cu2+ centres in a (CH3)2NH2Al(SO4)2·6H2O crystal. Eur. Phys. J. D 68, 313 (2014). https://doi.org/10.1140/epjd/e2014-50359-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50359-0

Keywords

Navigation