Skip to main content
Log in

Molecular dynamics simulations of the melting of KCl nanoparticles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations are used to investigate the thermodynamic properties and structural changes of KCl spherical nanoparticles at various sizes (1064, 1736, 2800, 3648, 4224 and 5832 ions) upon heating. The melting temperature is dependent on both the size and shape of KCl models, and the behaviour of the first order phase transition is also found in the present work. The surface melting found here is different from the melting phenomena of KCl models or other alkali halides studied in the past. In the premelting stage, a mixed phase containing liquid and solid ions covers the surface of nanoparticles. The only peak of heat capacity spreads out a significant segment of temperature, probably exhibiting both heterogeneous melting on the surface and homogeneous melting in the core. The coexistence of two melting mechanisms, homogeneous and heterogeneous ones, in our model is unlike those considered previously. We also found that the critical Lindemann ratio of the KCl nanoparticle becomes much more stable when the size of the nanoparticle is of the order of thousands of ions. A picture of the structural evolution upon heating is studied in more detail via the radial distribution function (RDF) and coordination numbers. Our results are in a good agreement with previous MD simulations and experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Luo, U. Landman, J. Jortner, in Physics and Chemistry of Small Clusters, edited by P. Jena, B.K. Rao, S. Khanna (Plenum, New York, 1987)

  2. C.L. Cleveland, U. Landman, W.D. Luedtke, J. Phys. Chem. 98, 6272 (1994)

    Article  Google Scholar 

  3. C.L. Cleveland, W.D. Luedtke, U. Landman, Phys. Rev. B 60, 5065 (1999)

    Article  ADS  Google Scholar 

  4. S. Schebarchov, S.C. Hendy, Phys. Rev. Lett. 96, 256101 (2006)

    Article  ADS  Google Scholar 

  5. R.S. Berry, J. Jellinek, G. Natanson, Phys. Rev. A 30, 919 (1984)

    Article  ADS  Google Scholar 

  6. P. Labastie, R.L. Whetten, Phys. Rev. Lett. 65, 1567 (1990)

    Article  ADS  Google Scholar 

  7. B. Vekhter, R.S. Berry, J. Chem. Phys. 106, 6456 (1997)

    Article  ADS  Google Scholar 

  8. G.A. Breaux, R.C. Benirschke, M.F. Jarrold, J. Chem. Phys. 121, 6502 (2004)

    Article  ADS  Google Scholar 

  9. P.C.R. Rodrigues, F.M.S.S. Fernandes, J. Mol. Struct. (Theochem) 946, 94 (2010)

    Article  Google Scholar 

  10. S. Matsunaga, S. Tamaki, Eur. Phys. J. B 63, 417 (2008)

    Article  ADS  Google Scholar 

  11. M. Kiguchi, K. Saiki, A. Koma, Surf. Sci. 470, 81 (2000)

    Article  ADS  Google Scholar 

  12. V.S. Znamenskii, P.F. Zil’berman, P.A. Savintsev, E.A. Goncharenko, Neorg. Mater. 32, 601 (1996)

    Google Scholar 

  13. P.W. Bridgman, Phys. Rev. 48, 893 (1935)

    Article  ADS  Google Scholar 

  14. D.G. Archer, J. Phys. Chem. Ref. Data 28, 1 (1999)

    Article  ADS  Google Scholar 

  15. S.M. Sterner, I.M. Chou, R.T. Downs, K.S. Pitzer, Geochim. Cosmochim. Acta 56, 2295 (1992)

    Article  ADS  Google Scholar 

  16. S.A. Kuznetsov, L. Rycerz, M.G. Escard, J. New Mater. Electrochem. Systems 9, 313 (2006)

    Google Scholar 

  17. Y. Okamoto, H. Motohashi, Z. Naturforsch. 57a, 277 (2002)

    Google Scholar 

  18. D.O. Welch, O.W. Lazareth, G.J. Dienes, R.D. Hatcher, J. Phys. Chem. 64, 835 (1976)

    Article  Google Scholar 

  19. T.P. Martin, J. Chem. Phys. 72, 3506 (1980)

    Article  ADS  Google Scholar 

  20. J. Diefenback, T.P. Martin, J. Chem. Phys. 83, 4585 (1985)

    Article  ADS  Google Scholar 

  21. J.P. Rose, R.S. Berry, J. Chem. Phys. 96, 517 (1992)

    Article  ADS  Google Scholar 

  22. J. Huang, X. Zhu, L.S. Bartell, J. Phys. Chem. A 102, 2708 (1998)

    Article  Google Scholar 

  23. M. Karplus, P.N. Porter, Atoms and Molecules: An Introduction for Students of Physical Chemistry (Benjamin/Cummings, Reading, 1970)

  24. M.P. Tosi, F.G. Fumi, J. Phys. Chem. Solids 25, 45 (1964)

    Article  ADS  Google Scholar 

  25. V.V. Hoang, D.K. Belashchenko, V.T.M. Thuan, Physica B 348, 249 (2004)

    Article  ADS  Google Scholar 

  26. S. Zhang, N. Chen, Mater. Sci. Eng. B 99, 588 (2003)

    Article  Google Scholar 

  27. P.C.R. Rodrigues, F.M.S.S. Fernandes, Eur. Phys. J. D 40, 115 (2006)

    Article  ADS  Google Scholar 

  28. J.P. Rose, R.S. Berry, J. Chem. Phys. 98, 3246 (1993)

    Article  ADS  Google Scholar 

  29. D. Schebarchov, S.C. Hendy, Phys. Rev. Lett. 95, 116101 (2005)

    Article  ADS  Google Scholar 

  30. W.H. Qi, M.P. Wang, Mater. Lett. 61, 3064 (2007)

    Article  Google Scholar 

  31. Y.G. Chushak, L.S. Bartell, J. Phys. Chem. B 105, 11605 (2001)

    Article  Google Scholar 

  32. D. Schebarchov, S.C. Hendy, Phys. Rev. B 73, 121402(R) (2006)

    Article  ADS  Google Scholar 

  33. V.V. Hoang, T.Q. Dong, J. Chem. Phys. 136, 104506 (2012)

    Article  ADS  Google Scholar 

  34. Y. Wang, S. Teitel, C. Dellago, Chem. Phys. Lett. 394, 257 (2004)

    Article  ADS  Google Scholar 

  35. T. Schubert, E. Schneck, M. Tanaka, J. Chem. Phys. 135, 055105 (2011)

    Article  ADS  Google Scholar 

  36. X. Zhu, K. Chen, J. Phys. Chem. Solids 66, 1732 (2005)

    Article  ADS  Google Scholar 

  37. J.O’M. Bockris, S.R. Richards, L. Nanis, J. Phys. Chem. 69, 1627 (1965)

    Article  Google Scholar 

  38. F.A. Lindemann, Z. Phys. 11, 609 (1910)

    MATH  Google Scholar 

  39. Y. Qi, T. Cagin, W.L. Johnson, W.A. Goddard III, J. Chem. Phys. 115, 385 (2001)

    Article  ADS  Google Scholar 

  40. S. Alavi, D.L. Thompson, J. Phys. Chem. A 110, 1518 (2006)

    Article  Google Scholar 

  41. A. Frenkel, E. Shasha, O. Gorodetsky, A. Voronel, Phys. Rev. B 48, 1283 (1993)

    Article  ADS  Google Scholar 

  42. S. Rabinovich, D. Berrebi, A. Voronel, J. Phys.: Condens. Matter 1, 6881 (1989)

    ADS  Google Scholar 

  43. S. Matsunaga, S. Tamaki, J. Phys.: Condens. Matter 20, 114116 (2008)

    ADS  Google Scholar 

  44. Z.H. Jin, P. Gumbsch, K. Lu, E. Ma, Phys. Rev. Lett. 87, 055703 (2001)

    Article  ADS  Google Scholar 

  45. F. Vanik, J. Baschnagel, K. Binder, Phys. Rev. E 65, 021507 (2002)

    Article  ADS  Google Scholar 

  46. J. Ghosh, R. Faller, J. Chem. Phys. 125, 044506 (2006)

    Article  ADS  Google Scholar 

  47. V.V. Hoang, J. Phys. Chem. C 116, 14728 (2012)

    Article  Google Scholar 

  48. V.V. Hoang, Philos. Mag. 91, 3443 (2011)

    Article  ADS  Google Scholar 

  49. V.V. Hoang, Physica B 405, 3653 (2011)

    Article  ADS  Google Scholar 

  50. L.V. Sang, V.V. Hoang, N.T.T. Hang, Eur. Phys. J. D 64, 67 (2013)

    Google Scholar 

  51. F. Ding, K. Bolton, A. Rosén, Eur. Phys. J. D 34, 275 (2005)

    Article  ADS  Google Scholar 

  52. R. Kofman, P. Cheyssac, Y. Lereah, A. Stella, Eur. Phys. J. D 9, 441 (1999)

    Article  ADS  Google Scholar 

  53. P.C.R. Rodrigues, F.M.S.S. Fernandes, Int. J. Quantum Chem. 84, 169 (2001)

    Article  Google Scholar 

  54. P.Z. Pawlow, Z. Phys. Chem. 65, 545 (1909)

    Google Scholar 

  55. P.A. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  ADS  Google Scholar 

  56. H. Reiss, I.B. Wilson, J. Colloid Sci. 3, 551 (1948)

    Article  Google Scholar 

  57. C.R.M. Wronski, J. Appl. Phys. 18, 1731 (1967)

    Google Scholar 

  58. V.P. Skripov, V.P. Koverda, V.N. Skokov, Phys. Stat. Sol. A 66, 109 (1981)

    Article  ADS  Google Scholar 

  59. P.R. Couchman, W.A. Jesser, Nature 269, 481 (1977)

    Article  ADS  Google Scholar 

  60. E.G. Noya, P.K. Doye, J. Chem. Phys. 124, 104503 (2006)

    Article  ADS  Google Scholar 

  61. M.H. Ghatee, K. Shekoohi, Fluid Phase Equilib. 327, 14 (2012)

    Article  Google Scholar 

  62. L. Wang, Y. Zhang, X. Bian, Y. Chen, Phys. Lett. A 310, 197 (2003)

    Article  ADS  Google Scholar 

  63. A.S. Clarke, H. Jónsson, Phys. Rev. E 47, 3975 (1997)

    Article  ADS  Google Scholar 

  64. A.M. Pendás, V. Luaòa, J.M. Recio, M. Flórez, E. Francisco, M.A. Blanco, L.N. Kantorovich, Phys. Rev. B 49, 3066 (1994)

    Article  ADS  Google Scholar 

  65. P.B. Ghate, Phys. Rev. 139, 1666 (1965)

    Article  ADS  Google Scholar 

  66. F. Delogu, Phys. Rev. B 73, 184 (2006)

    Article  Google Scholar 

  67. F. Delogu, J. Phys. Chem. 110, 12645 (2006)

    Article  Google Scholar 

  68. V.V. Hoang, D. Ganguli, Phys. Rep. 518, 81 (2012)

    Article  ADS  Google Scholar 

  69. J.Y. Derrien, J.Y. Dupuy, Phys. Chem. Liquids 5, 71 (1976)

    Article  Google Scholar 

  70. Y. Shirakawa, S. Tamaki, M. Saito, S. Harada, S. Takeda, J. Non-Cryst. Solids 117-118, 638 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Van Sang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, L.V., Huong, T.T.T. & Minh, L.N.T. Molecular dynamics simulations of the melting of KCl nanoparticles. Eur. Phys. J. D 68, 292 (2014). https://doi.org/10.1140/epjd/e2014-40454-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40454-7

Keywords

Navigation