Skip to main content
Log in

DNA adsorption on graphene

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here we use classical applied mathematical modeling to determine surface binding energies between both single-strand and double-strand DNA molecules interacting with a graphene sheet. We adopt basic mechanical principles to exploit the 6–12 Lennard-Jones potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic line or surface densities. The minimum binding energy occurs when the single-strand DNA molecule is centred 20.2 Å from the surface of the graphene and the double-strand DNA molecule is centred 20.3 Å from the surface, noting that these close values apply for the case when the axis of the helix is perpendicular to the surface of graphene. For the case when the axis of the helix is parallel to the surface, the minimum binding energy occurs when the axis of the single-strand molecule is 8.3 Å from the surface, and the double-strand molecule has axis 13.3 Å from the surface. For arbitrary tilted axis, we determine the optimal angles Ω of the axis of the helix, which give the minimum values of the binding energies, and we observe that the optimal angles tend to occur in the intervals Ω ∈ (π /4/2) and Ω ∈ (π /7/5) for the single and double-strand DNA molecules, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Nature 467, 190 (2010)

    Article  ADS  Google Scholar 

  3. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis 22, 1027 (2019)

    Article  Google Scholar 

  4. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th edn. (Garland Science, New York, 2008)

  5. J.D. Watson, F.H.C. Crick, Nature 171, 737 (1953)

    Article  ADS  Google Scholar 

  6. G. Lu, P. Maragakis, E. Kaxiras, Nano Lett. 5, 897 (2005)

    Article  ADS  Google Scholar 

  7. T. Premkumar, K.E. Geckeler, Prog. Polym. Sci. 37, 515 (2012)

    Article  Google Scholar 

  8. L. Meng, Z. Qiang, Z. Huimin, C. Shuo, Y. Hongtao, Z. Yaobin, Q. Xie, Chem. Commun. 47, 4084 (2011)

    Article  Google Scholar 

  9. N. Mohanty, V. Berry, Nano Lett. 8, 4469 (2008)

    Article  ADS  Google Scholar 

  10. A.B. Oliveira Brett, A. Chiorcea, Langmuir 19, 3830 (2003)

    Article  Google Scholar 

  11. S. Gowtham, H.S. Ralph, R. Ahuja, R. Pandey, S.P. Karna, Phys. Rev. B 76, 033401 (2007)

    Article  ADS  Google Scholar 

  12. J. Antony, S. Grimme, Phys. Chem. Chem. Phys. 10, 2722 (2008)

    Article  Google Scholar 

  13. X. Zhao, J. Phys. Chem. C 115, 6181 (2011)

    Article  Google Scholar 

  14. M. Kabelac, O. Kroutil, M. Predota, F. Lankas, M. Sip, Phys. Chem. Chem. Phys. 14, 4217 (2012)

    Article  Google Scholar 

  15. N. Varghese, U. Mogera, A. Govindaraj, A. Das, P.K. Maiti, A.K. Sood, C.N.R. Rao, Chem. Phys. Chem. 10, 206 (2009)

    Article  Google Scholar 

  16. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104, 2794 (2000)

    Article  Google Scholar 

  17. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)

    Article  Google Scholar 

  18. J.E. Jones, Proc. R. Soc. Lond. A 106, 441 (1924)

    Article  ADS  Google Scholar 

  19. B.J. Cox, N. Thamwattana, J.M. Hill, J. Phys. A 41, 235209 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Academic Press, New York, 2007)

  21. G. Huajian, Y. Kong, D. Cui, Nano Lett. 3, 471 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor H. Alshehri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alshehri, M.H., Cox, B.J. & Hill, J.M. DNA adsorption on graphene. Eur. Phys. J. D 67, 226 (2013). https://doi.org/10.1140/epjd/e2013-40324-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40324-x

Keywords

Navigation