Skip to main content
Log in

Sequence dependent interaction of single stranded DNA with graphitic flakes: atomistic molecular dynamics simulations

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In an attempt to understand the structure and dynamics of ssDNA on graphene based surfaces, we performed all-atom implicit solvent molecular dynamics simulations of ssDNA on graphene and graphene oxide (GO) surfaces. Simulations indicate that adsorption of poly(A), poly(T) and poly (AT) have similar mechanisms of adsorption to free standing graphitic flakes, which are governed by a surface oxygen content. Specifically, higher oxygen content of a surface leads to decrease in persistence length of ssDNA. However, the role of DNA sequence on the physisorption mechanism is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Hogan, R.H. Austin, “Importance of DNA Stiffness in Protein DNA-Binding Specificity” Nature 1987, 329, 263–266.

    Article  CAS  Google Scholar 

  2. J.J. Gooding, G.C. King, “Nucleic acid biosensors based upon surface-assembled monolayers: exploiting and enhancing materials properties” Journal of Materials Chemistry 2005, 15, 4876–4880.

    Article  CAS  Google Scholar 

  3. M.M. Lozano, CD. Starkel, M.L. Longo, “Vesicles Tethered to Microbubbles by Hybridized DNA Oligonucleotides: Flow Cytometry Analysis of This New Drug Delivery Vehicle Design” Langmuir 2010, 26, 8517–8524.

    Article  CAS  Google Scholar 

  4. N.K. Li, H.S. Kim, J.A. Nash, M. Lim, Y.G. Yingling, “Progress in molecular modelling of DNA materials” Molecular Simulation 2014, 40, 777–783.

    Article  CAS  Google Scholar 

  5. A. Singh, H. Eksiri, Y.G. Yingling, “Theoretical Perspective on Properties of DNA-Functionalized Surfaces” Journal of Polymer Science Part B-Polymer Physics 2011, 49, 1563–1568.

    Article  CAS  Google Scholar 

  6. Y. He, B.N. Jiao, H.W. Tang, “Interaction of single-stranded DNA with graphene oxide: fluorescence study and its application for S1 nuclease detection” Rsc Advances 2014, 4, 18294–18300.

    Article  CAS  Google Scholar 

  7. A. Singh, S. Snyder, L. Lee, A.P.R. Johnston, F. Caruso, Y.G. Yingling, “Effect of Oligonucleotide Length on the Assembly of DNA Materials: Molecular Dynamics Simulations of Layer-by-Layer DNA Films” Langmuir 2010, 26, 17339–17347.

    Article  CAS  Google Scholar 

  8. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, “Graphene and Graphene Oxide: Synthesis, Properties, and Applications” Advanced Materials 2010, 22, 3906–3924.

    Article  CAS  Google Scholar 

  9. J.L. Chen, X.G. Wang, C.Q. Dai, S.D. Chen, Y.S. Tu, “Adsorption of GA module onto graphene and graphene oxide: A molecular dynamics simulation study” Physica E-Low-Dimensional Systems & Nanostructures 2014, 62, 59–63.

    Article  CAS  Google Scholar 

  10. L. Baweja, K. Balamurugan, V. Subramanian, A. Dhawan, “Hydration Patterns of Graphene-Based Nanomaterials (GBNMs) Play a Major Role in the Stability of a Helical Protein: A Molecular Dynamics Simulation Study” Langmuir 2013, 29, 14230–14238.

    Article  CAS  Google Scholar 

  11. X.T. Sun, Z.W. Feng, T.J. Hou, Y.Y. Li, “Mechanism of Graphene Oxide as an Enzyme Inhibitor from Molecular Dynamics Simulations” Acs Applied Materials & Interfaces 2014,6,7153–7163.

    Article  CAS  Google Scholar 

  12. T.J. Macke, D.A. Case, “Modeling unusual nucleic acid structures” Molecular Modeling of Nucleic Acids 1998, 682, 379–393.

    Article  CAS  Google Scholar 

  13. D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, “AMBER 12” University of California, San Francisco 2012.

  14. K. Range, E. Mayaan, L.J. Maher, D.M. York, “The contribution of phosphate-33hosphate repulsions to the free energy of DNA bending” Nucleic Acids Research 2005, 33, 1257–1268.

    Article  CAS  Google Scholar 

  15. J.M. Wang, P. Cieplak, P.A. Kollman, “How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?” Journal of Computational Chemistry 2000, 21, 1049–1074.

    Article  CAS  Google Scholar 

  16. W. Humphrey, A. Dalke, K. Schulten, “VMD: Visual molecular dynamics” Journal of Molecular Graphics & Modelling 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  17. J.M. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, “Development and testing of a general amber force field” Journal of Computational Chemistry 2004, 25, 1157–1174.

    Article  CAS  Google Scholar 

  18. D. Stauffer, N. Dragneva, W.B. Floriano, R.C. Mawhinney, G. Fanchini, S. French, O. Rubel, “An atomic charge model for graphene oxide for exploring its bioadhesive properties in explicit water” Journal of Chemical Physics 2014,141.

  19. H.J.C. Berendsen, J.P.M. Postma, W.F. Vangunsteren, A. Dinola, J.R. Haak, “Molecular-Dynamics with Coupling to an External Bath” Journal of Chemical Physics 1984, 81, 3684–3690.

    Article  CAS  Google Scholar 

  20. M. Rubinstein, R. Colby, Polymers Physics. Oxford: 2003.

  21. D. Bashford, D.A. Case, “Generalized born models of macromolecular solvation effects” Annual Review of Physical Chemistry 2000, 51, 129–152.

    Article  CAS  Google Scholar 

  22. A.K. Manna, S.K. Pati, “Theoretical understanding of single-stranded DNA assisted dispersion of graphene” Journal of Materials Chemistry B 2013, 1, 91–100.

    Article  CAS  Google Scholar 

  23. H.S. Kim, S.H. Ha, L. Sethaphong, Y.M. Koo, Y.G. Yingling, “The relationship between enhanced enzyme activity and structural dynamics in ionic liquids: a combined computational and experimental study” Physical Chemistry Chemical Physics 2014,16, 2944–2953.

    Article  CAS  Google Scholar 

  24. H.S. Kim, R. Pani, S.H. Ha, Y.M. Koo, Y.G. Yingling, “The role of hydrogen bonding in water-mediated glucose solubility in ionic liquids” Journal of Molecular Liquids 2012, 166, 25–30.

    Article  CAS  Google Scholar 

  25. D.R. Roe, T.E. Cheatham, “PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data” Journal of Chemical Theory and Computation 2013, 9, 3084–3095.

    Article  CAS  Google Scholar 

  26. G.B. McGaughey, M. Gagne, A.K. Rappe, “pi-stacking interactions - Alive and well in proteins” Journal of Biological Chemistry 1998, 273, 15458–15463.

    Article  CAS  Google Scholar 

  27. C.A. Hunter, J. Singh, J.M. Thornton, “Pi-Pi-Interactions - the Geometry and Energetics of Phenylalanine Phenylalanine Interactions in Proteins” Journal of Molecular Biology 1991, 218, 837–846.

    Article  CAS  Google Scholar 

  28. A.N. Round, M. Berry, T.J. McMaster, S. Stall, D. Gowers, A.P. Corfield, M.J. Miles, “Hetero3eneity and persistence length in human ocular mucins” Biophysical Journal 2002, 83,1661–1670.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Huang, S.M. & Yingling, Y.G. Sequence dependent interaction of single stranded DNA with graphitic flakes: atomistic molecular dynamics simulations. MRS Advances 1, 1883–1889 (2016). https://doi.org/10.1557/adv.2016.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.91

Navigation