Skip to main content
Log in

Room temperature synthesis of rutile titania nanoparticles: a thermodynamic perspective

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Films of rutile titania nanoparticles with nearly spherical morphology were prepared using chemical solution deposition at room temperature. The results of the study show that the phase, size and morphology of the particle and the compactness of the film can apparently be controlled by controlling the surface hydrogenation of the particle. The results were very much in agreement with the predictions made by the established thermodynamic model of Barnard and Zapol. The present study opens new avenues for the synthesis of phase specific nanoparticles of titania with different morphologies at room temperature by varying the levels of surface hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Poole, F.J. Owens, in Introduction to Nanotechnology (John Wiley & Sons, 2006), Chaps. 4 and 13

  2. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  3. O. Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  ADS  Google Scholar 

  4. M.K. Nazeeruddin, A. Kay, I. Rodicio, R.H. Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  Google Scholar 

  5. M. Gratzel, Nature 414, 338 (2001)

    Article  ADS  Google Scholar 

  6. M. Koelsch, S. Cassaignon, C.T.T. Minh, J.F. Guillemoles, J.P. Jolivet, Thin Solid Films 312, 403 (2002)

    Google Scholar 

  7. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Lévy, J. Appl. Phys. 75, 2042 (1994)

    Article  ADS  Google Scholar 

  8. A. Navrotsky, O.J. Kleppa, J. Am. Ceram. Soc. 50, 626 (1967)

    Article  Google Scholar 

  9. T. Mitsuhashi, O.J. Kleppa, J. Am. Ceram. Soc. 62, 356 (1979)

    Article  Google Scholar 

  10. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  Google Scholar 

  11. A.A. Gribb, J.F. Banfield, Am. Mineral. 82, 717 (1997)

    Google Scholar 

  12. T.Y. Ke, C.W. Peng, C.Y. Lee, H.T. Chiu, H.S. Sheu, Cryst. Eng. Commun. 11, 1691 (2009)

    Article  Google Scholar 

  13. H.G. Roy, DOI: 10.12966/ram.09.02.2013

  14. S.T. Aruna, S. Tirosh, A. Zaban, J. Mater. Chem. 10, 2388 (2000)

    Article  Google Scholar 

  15. W.Y. Wang, L.Z. Zhang, K.J. Deng, Z.Y. Chen, Z.G. Zou, J. Phys. Chem. C 111, 2709 (2007)

    Article  Google Scholar 

  16. H. Cheng, J. Ma, J.Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)

    Article  Google Scholar 

  17. K. Yanagisawa, J. Ovenstone, J. Phys. Chem. B 103, 7781 (1999)

    Article  Google Scholar 

  18. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  Google Scholar 

  19. C.H. Yu, N. Caiulo, C.C.H. Lo, K. Tam, S.C. Tsang, Adv. Mater. 18, 2312 (2006)

    Article  Google Scholar 

  20. D. Guin, S.V. Manorama, Mater. Lett. 62, 3139 (2008)

    Article  Google Scholar 

  21. L. Li, L. Chen, R. Qihe, G. Li, Appl. Phys. Lett. 89, 134102 (2006)

    Article  ADS  Google Scholar 

  22. B. Fei, Z.X. Deng, J.H. Xin, Y.H. Zhang, G. Pang, Nanotechnology 17, 1927 (2006)

    Article  ADS  Google Scholar 

  23. W. Wang, B.H. Gu, L.Y. Liang, W.A. Hamilton, D.J. Wesolowski, J. Phys. Chem. B 108, 14789 (2004)

    Article  Google Scholar 

  24. Y. Li, J.L. Liu, Z.J. Jia, Mater. Lett. 60, 1753 (2006)

    Article  Google Scholar 

  25. A.S. Barnard, P. Zapol, Phys. Rev. B 70, 235403 (2004)

    Article  ADS  Google Scholar 

  26. C.D. Lokhande, B.O. Park, H.S. Park, K.D. Jung, O.S. Joo, Ultramicroscopy 105, 267 (2005)

    Article  Google Scholar 

  27. A.M. More, T.P. Gujar, J.L. Gunjakar, C.D. Lokhande, O.S. Joo, Appl. Surf. Sci. 255, 2682 (2008)

    Article  ADS  Google Scholar 

  28. A.S. Barnard, P. Zapol, J. Phys. Chem. B 108, 18435 (2004)

    Article  Google Scholar 

  29. D. Nicholls, in Complexes and First-row Transition Elements (Macmillan, New York, 1974), Chap. 11

  30. M.P. Finnegan, H. Zhang, J.F. Banfield, J. Phys. Chem. C 111, 1962 (2007)

    Article  Google Scholar 

  31. A.S. Barnard, L.A. Curtiss, Nano Lett. 7, 1261 (2005)

    Article  ADS  Google Scholar 

  32. M. Yoon, M. Seo, C. Jeong, H.J. Jang, K.S. Jeon, Chem. Mater. 17, 6069 (2005)

    Article  Google Scholar 

  33. M. Zhou, L. Zhang, J. Dong, Q. Qin, J. Am. Chem. Soc. 122, 10680 (2000)

    Article  Google Scholar 

  34. T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baran, H. Ratajczak, J. Mol. Struct. 700, 17 (2004)

    Article  Google Scholar 

  35. H. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073 (1998)

    Article  Google Scholar 

  36. W. Chen, Z. Wang, Z. Lin, L. Lin, J. Appl. Phys. 82, 3411 (1997)

    Google Scholar 

  37. H.Z. Zhang, B. Gilbert, F. Huang, J.F. Banfield, Nature 424, 1025 (2003)

    Article  ADS  Google Scholar 

  38. B. Gilbert, H.Z. Zhang, F. Huang, J.F. Banfield, Y. Ren, D. Hascal, J.C. Lang, G. Srajer, A. Jurgensen, G.A. Waychunas, J. Chem. Phys. 120, 11785 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Rajendra Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendra Prasad, M.B., Pathan, H.M. Room temperature synthesis of rutile titania nanoparticles: a thermodynamic perspective. Eur. Phys. J. D 68, 25 (2014). https://doi.org/10.1140/epjd/e2013-40268-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40268-1

Keywords

Navigation