Skip to main content
Log in

Transient calorimetric diagnostics for plasma processing

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper reports on an improvement of the calorimetric method for the determination of energy fluxes from plasma towards substrates by using a transient technique. It provides a short overview of the traditional method used for characterization of plasma-wall-interactions during plasma processing. The mathematical framework of the method and possible implications are discussed. It is shown how the method can be improved to obtain additional and detailed information about the energy influx in a shorter measurement time. For this purpose, the probe bias (if applied), which has commonly been kept constant is varied like in Langmuir probe measurements. The experimental validation of the theoretical considerations emphasizes the potential of the method for control in plasma processing. The possibility how the passive calorimetric probe can be used in continuous measurements for process monitoring without any feedback loops used by other probes, is finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Low Temperature Plasmas: Fundamentals, Technologies and Techniques, edited by R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach (Wiley-VCH, 2008)

  2. J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)

    Article  ADS  Google Scholar 

  3. G. Mah, P.S. McLeod, D.G. Williams, J. Vac. Sci. Technol. 11, 663 (1974)

    Article  ADS  Google Scholar 

  4. R.D. Bland, G.J. Kominiak, D.M. Mattox, J. Vac. Sci. Technol. 11, 671 (1974)

    Article  ADS  Google Scholar 

  5. H. Kersten, G.M.W. Kroesen, R. Hippler, Thin Solid Films 332, 282 (1998)

    Article  ADS  Google Scholar 

  6. J.M. Andersson, E. Wallin, E.P. Münger, U. Helmersson, J. Appl. Phys. 100, 033305 (2006)

    Article  ADS  Google Scholar 

  7. D.J. Ball, J. Appl. Phys. 43, 3047 (1972)

    Article  ADS  Google Scholar 

  8. J.A. Thornton, Thin Solid Films 54, 23 (1978)

    Article  ADS  Google Scholar 

  9. G. Makrinich, A. Fruchtman, J. Appl. Phys. 100, 093302 (2006)

    Article  ADS  Google Scholar 

  10. R. Piejak, V. Godyak, B. Alexandrovich, N. Tishchenko, Plasma Sources Sci. Technol. 7, 590 (1999)

    Article  ADS  Google Scholar 

  11. H. Kersten, D. Rohde, J. Berndt, H. Deutsch, R. Hippler, Thin Solid Films 377, 585 (2000)

    Article  ADS  Google Scholar 

  12. E. Stamate, H. Sugai, K. Ohe, Appl. Phys. Lett. 80, 3066 (2002)

    Article  ADS  Google Scholar 

  13. S.D. Ekpe, S.K. Dew, J. Vac. Sci. Technol. A 22, 1420 (2004)

    Article  ADS  Google Scholar 

  14. C. Paturaud, G. Farges, M.C. Sainte Catherine, J. Machet, Surf. Coat. Technol. 98, 1257 (1998)

    Article  Google Scholar 

  15. T.P. Drüsedau, T. Bock, T.M. John, F. Klabunde, W. Eckstein, J. Vac. Sci. Technol. A 17, 2896 (1999)

    Article  ADS  Google Scholar 

  16. M. Čada, P. Virostko, Š. Kment, Z. Hubička, Plasma Process. Polym. 6, S247 (2009)

    Article  Google Scholar 

  17. T.P. Drüsedau, K. Koppenhagen, Surf. Coat. Technol. 153, 155 (2002)

    Article  Google Scholar 

  18. S. Bornholdt, T. Peter, T. Strunskus, V. Zaporojtchenko, F. Faupel, H. Kersten, Surf. Coat. Technol. 205, 388 (2011)

    Article  Google Scholar 

  19. S. Bornholdt, J. Ye, S. Ulrich, H. Kersten, J. Appl. Phys. 112, 123301 (2012)

    Article  ADS  Google Scholar 

  20. D. Lundin, M. Stahl, H. Kersten, U. Helmersson, J. Phys. D 42, 185202 (2009)

    Article  ADS  Google Scholar 

  21. V. Stranak, M. Cada, Z. Hubicka, M. Tichy, R. Hippler, J. Appl. Phys. 108, 043305 (2010)

    Article  ADS  Google Scholar 

  22. W.P. Leroy, S. Konstantinidis, S. Mahieu, R. Snyders, D. Depla, J. Phys. D 44, 115201 (2011)

    Article  ADS  Google Scholar 

  23. P.A. Cormier, A. Balhamri, A.L. Thomann, R. Dussart, N. Semmar, J. Mathias, R. Snyders, S. Konstantinidis, J. Appl. Phys. 113, 013305 (2013)

    Article  ADS  Google Scholar 

  24. H. Kersten, G.M.W. Kroesen, Contrib. Plasma Phys. 30, 725 (1990)

    Article  ADS  Google Scholar 

  25. H. Kersten, D. Steffen, D. Vender, H.E. Wagner, Vacuum 46, 305 (1995)

    Article  Google Scholar 

  26. H. Kersten, D. Rohde, H. Steffen, H. Deutsch, R. Hippler, G. Swinkels, G.M.W. Kroesen, Appl. Phys. A: Mater. Sci. Process. 72, 531 (2001)

    Article  ADS  Google Scholar 

  27. H. Kersten, E. Stoffels, W.W. Stoffels, M. Otte, C. Csambal, H. Deutsch, R. Hippler, J. Appl. Phys. 87, 3637 (2000)

    Article  ADS  Google Scholar 

  28. R. Dussart, A.L. Thomann, L.E. Pichon, L. Bedra, N. Semmar, P. Lefaucheux, J. Mathias, Y. Tessier, Appl. Phys. Lett. 93, 131502 (2008)

    Article  ADS  Google Scholar 

  29. M. Wolter, M. Stahl, H. Kersten, Vacuum 83, 768 (2008)

    Article  Google Scholar 

  30. M. Wolter, M. Stahl, H. Kersten, Plasma Process. Polym. 6, S626 (2009)

    Article  Google Scholar 

  31. M. Stahl, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 81, 023504 (2010)

    Article  ADS  Google Scholar 

  32. C. Roth, A. Spillmann, A. Sonnenfeld, P. Rudolf von Rohr, Plasma Process. Polym. 6, S566 (2009)

    Article  Google Scholar 

  33. C. Roth, S. Bornholdt, V. Zuber, A. Sonnenfeld, H. Kersten, P. Rudolf von Rohr, J. Appl. Phys. 44, 095201 (2010)

    Google Scholar 

  34. C. Roth, G. Oberbossel, P. Rudolf von Rohr, J. Phys. D 45, 355202 (2012)

    Article  Google Scholar 

  35. E. Stoffels, R.E.J. Sladek, I.E. Kieft, H. Kersten, R. Wiese, Plasma Phys. Control. Fusion 46, B167 (2004)

    Article  Google Scholar 

  36. S. Bornholdt, M. Wolter, H. Kersten, Eur. Phys. J. D 60, 653 (2010)

    Article  ADS  Google Scholar 

  37. S.A. Khrapak, G.E. Morfill, Phys. Plasmas 13, 104506 (2006)

    Article  ADS  Google Scholar 

  38. H. Maurer, R. Basner, H. Kersten, Rev. Sci. Instrum. 79, 093508 (2008)

    Article  ADS  Google Scholar 

  39. G. Golan, A. Axelevitch, J. Optoelectron. Adv. Mater. 5, 1417 (2003)

    Google Scholar 

  40. J. Schulze, E. Schüngel, U. Czarnetzki, J. Phys. D 42, 092005 (2009)

    Article  ADS  Google Scholar 

  41. S. Bornholdt, N. Itagki, K. Kuwahara, H. Wulff, M. Shiratani, H. Kersten, Plasma Sources Sci. Technol. 22, 025019 (2013)

    Article  ADS  Google Scholar 

  42. R. Wiese, H. Kersten, G. Wiese, M. Häckel, Vakuum Forschung Praxis 23, 20 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bornholdt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornholdt, S., Kersten, H. Transient calorimetric diagnostics for plasma processing. Eur. Phys. J. D 67, 176 (2013). https://doi.org/10.1140/epjd/e2013-40148-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40148-8

Keywords

Navigation