Skip to main content

Advertisement

Log in

Different orientations of molecular water on neutral and charged aluminium clusters Al17 (n = 0–3)

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Some aluminium clusters of specific sizes have attracted much attention because of their catalytic properties. Here, adsorptions of molecular water on Al17 n± (n = 0−3) clusters were investigated using density functional theory with all electron spin-polarized calculations under the generalized gradient approximation. Among the bare Al17 n± (n = 0−3) clusters, the neutral particle seems to have the shortest average Al-Al bond length, while the Al17 anion has the lowest energy. From the spatial distributions of the highest occupied molecular orbitals in the Al17 n± (n = 0−3) clusters, it was found that the free electrons are prone to occupying the sites with large curvatures. An extensive structure search was performed to identify the low-energy conformations of (Al17H2O)n± (n = 0−3) complexes. The stabilities and geometries revealed that the anionic Al17 n- (n = 1−3) clusters are prone to hydrogen-affinity adsorptions with long Al-H2O distances, while the neutral Al17 and cationic Al17 n+ (n = 1−3) clusters favour oxygen-affinity adsorptions with short Al-H2O distances. The calculated geometrical structures, electronic structures and populations indicated that the hydrogen-affinity and oxygen-affinity adsorptions correspond to physisorptions and chemisorptions, respectively. Strong electric field intensities were found at the centre of the H2O molecules for the neutral Al17H2O and cationic (Al17H2O)n+ (n = 1−3) complexes, with a magnitude of about 22 V/nm. The spatial distributions of the electrons and the adsorption behaviour of the water molecules can be regarded as the microscopic tip effect, which can be employed to predict or design different molecular orientations on the cluster surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 365, 141 (1993)

    Article  ADS  Google Scholar 

  2. P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)

    Article  ADS  Google Scholar 

  3. A.C. Reber, P.J. Roach, S.N. Khanna, W.H. Woodward, A.W. Castleman, J. Phys. Chem. A 116, 8085 (2012)

    Article  Google Scholar 

  4. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  5. J.A. Alonso, Chem. Rev. 100, 637 (2000)

    Article  Google Scholar 

  6. F.C. Chuang, C.Z. Wang, K.H. Ho, Phys. Rev. B 73, 125431 (2006)

    Article  ADS  Google Scholar 

  7. S. Yin, R. Moro, X. Xu, W.A. de Heer, Phys. Rev. Lett. 98, 113401 (2007)

    Article  ADS  Google Scholar 

  8. P.A. Guirado-López, F. Aguilera-Granja, J. Phys. Chem. C 112, 6729 (2008)

    Article  Google Scholar 

  9. H.Q. Wang, X.Y. Kuang, H.F. Li, Phys. Chem. Chem. Phys. 12, 5156 (2010)

    Article  Google Scholar 

  10. J.W. Hewage, W.L. Rupika, F.G. Amar, Eur. Phys. J. D 66, 282 (2012)

    Article  ADS  Google Scholar 

  11. S. Yu, Q. Zeng, S. Yang, M. Yang, J. Phys. 43, 185101 (2010)

    ADS  Google Scholar 

  12. X. Yuan, L. Liu, X. Wang, M. Yang, K.A. Jackson, J. Jellinek, J. Phys. Chem. A 115, 8705 (2011)

    Article  Google Scholar 

  13. M. Schmidt, A. Masson, C. Brechignac, Phys. Rev. Lett. 91, 243401 (2004)

    Article  ADS  Google Scholar 

  14. J. Zhou, Z.H. Li, W.N. Wang, K.N. Fan, J. Phys. Chem. A 110, 7167 (2006)

    Article  Google Scholar 

  15. G.F. Wu, J.L. Wang, Y.M. Lu, M.L. Yang, J. Chem. Phys. 128, 224315 (2008)

    Article  ADS  Google Scholar 

  16. G.P. Petrova, G.N. Vayssilov, N. Rosch, J. Phys. Chem. C 112, 18572 (2008)

    Article  Google Scholar 

  17. A. Lyalin, T. Taketsugu, J. Phys. Chem. C 114, 2484 (2010)

    Article  Google Scholar 

  18. A. Varano, D.J. Henry, I. Yarovsky, J. Phys. Chem. A 114, 3602 (2010)

    Article  Google Scholar 

  19. K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, Science 282, 265 (1998)

    Article  ADS  Google Scholar 

  20. S.M. Lang, P. Claes, S. Neukermans, E. Janssens, J. Am. Soc. Mass Spectrom. 22, 1508 (2011)

    Article  Google Scholar 

  21. P.J. Roach, W.H. Woodward, A.W. Castleman Jr., A.C. Reber, S.N. Khanna, Science 323, 492 (2009)

    Article  ADS  Google Scholar 

  22. S.L. Lai, J.R.A. Carlsson, L.H. Allen, Appl. Phys. Lett. 72, 1098 (1998)

    Article  ADS  Google Scholar 

  23. J. Jia, J. Wang, X. Liu, Q. Xue, Z. Li, Y. Kawazoe, S.B. Zhang, Appl. Phys. Lett. 80, 3186 (2002)

    Article  ADS  Google Scholar 

  24. L. Cândido, J.N. Teixeira Rabelo, J.L.F. Da Silva, G.Q. Hai, Phys. Rev. B 85, 245404 (2012)

    Article  ADS  Google Scholar 

  25. P. Mitev, D.G. Papageorgiou, C.E. Lekka, G.A. Evangelakis, Surf. Sci. 566, 937 (2004)

    Article  ADS  Google Scholar 

  26. P. Gerhardt, M. Niemietz, Y.D. Kim, G. Gantefor, Chem. Phys. Lett. 382, 454 (2003)

    Article  ADS  Google Scholar 

  27. N.E. Schultz, D.G. Truhlar, J. Chem. Theor. Comput. 1, 41 (2005)

    Article  Google Scholar 

  28. R. Werner, Eur. Phys. J. B 43, 47 (2005)

    Article  ADS  Google Scholar 

  29. J. Sun, W.C. Lu, Z.S. Li, C.Z. Wang, K.M. Ho, J. Chem. Phys. 129, 014707 (2008)

    Article  ADS  Google Scholar 

  30. E.G. Noya, J.P.K. Doye, F. Calvo, Phys. Rev. B 73, 125407 (2006)

    Article  ADS  Google Scholar 

  31. N.E. Schultz, G. Staszewska, P. Staszewski, D.G. Truhlar, J. Phys. Chem. B 108, 4850 (2004)

    Article  Google Scholar 

  32. S. Álvarez-Barcia, J.R. Flores, J. Phys. Chem. C 115, 24849 (2011)

    Article  Google Scholar 

  33. S. Álvarez-Barcia, J.R. Flores, J. Phys. Chem. A 116, 8040 (2012)

    Article  Google Scholar 

  34. C. Mosch, C. Koukounas, N. Bacalis, A. Metropoulos, A. Gross, A. Mavridis, J. Phys. Chem. C 112, 6924 (2008)

    Article  Google Scholar 

  35. E.I. Alexandrou, A. Gross, N.C. Bacalis, J. Chem. Phys. 132, 154701 (2010)

    Article  ADS  Google Scholar 

  36. L. Wang, M.M. Kuklja, J. Phys. Chem. Solids 71, 140 (2010)

    Article  ADS  Google Scholar 

  37. D.J. Henry, A. Varano, I. Yarovsky, J. Phys. Chem. A 113, 5832 (2009)

    Article  Google Scholar 

  38. H. Xiang, J. Kang, S.H. Wei, Y.H. Kim, C. Curtis, D. Blake, J. Am. Chem. Soc. 131, 8522 (2009)

    Article  Google Scholar 

  39. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  40. S.N. Khanna, P. Jena, Phys. Rev. B 51, 13705 (1995)

    Article  ADS  Google Scholar 

  41. D.E. Bergeron, A.W. Castleman Jr., T. Morisato, S.N. Khanna, Science 304, 84 (2004)

    Article  ADS  Google Scholar 

  42. D.E. Bergeron, P.J. Roach, A.W. Castleman Jr., N.O. Jones, S.N. Khanna, Science 307, 231 (2005)

    Article  ADS  Google Scholar 

  43. F. Shimojo, S. Ohmura, R.K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett. 104, 126102 (2010)

    Article  ADS  Google Scholar 

  44. D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995)

    Article  ADS  Google Scholar 

  45. K.M. Ho, A.A. Shvartsburg, B.C. Pan, Z.Y. Lu, C.Z. Wang, J. Wacker, J.L. Fye, M.F. Jarrold, Nature 392, 582 (1998)

    Article  ADS  Google Scholar 

  46. F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)

    Article  ADS  Google Scholar 

  47. B. Delley, J. Chem. Phys. 92, 508 (1990)

    Article  ADS  Google Scholar 

  48. B. Delley, J. Chem. Phys. 94, 7245 (1991)

    Article  ADS  Google Scholar 

  49. B. Delley, J. Chem. Phys. 113, 7756 (2000)

    Article  ADS  Google Scholar 

  50. Y. Inada, H. Orita, J. Comput. Chem. 29, 225 (2008)

    Article  Google Scholar 

  51. A.D. Becke, J. Chem. Phys. 88, 2547 (1988)

    Article  ADS  Google Scholar 

  52. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  53. B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131, 233 (1997)

    Article  ADS  MATH  Google Scholar 

  54. M.F. Cai, T.P. Dzugan, V.E. Bondybey, Chem. Phys. Lett. 155, 430 (1989)

    Article  ADS  Google Scholar 

  55. R.O. Jones, Phys. Rev. Lett. 67, 224 (1991)

    Article  ADS  Google Scholar 

  56. J. Sun, W.C. Lu, H. Wang, Z.S. Li, C.C. Sun, J. Phys. Chem. A 110, 2729 (2006)

    Article  Google Scholar 

  57. Z.Y. Jiang, C.J. Yang, S.T. Li, J. Chem. Phys. 123, 204315 (2005)

    Article  ADS  Google Scholar 

  58. S.H. Yang, D.A. Drabold, J.B. Adams, A. Sachdev, Phys. Rev. B 47, 1567 (1993)

    Article  ADS  Google Scholar 

  59. Handbook of Chemistry and Physics on CD-ROM, edited by D.R. Lide (CRC Press, Boca Raton, 2003)

  60. S. Chrêtien, M.S. Gordon, H. Metiu, J. Chem. Phys. 121, 3756 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiliang Liu or Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Hua, Y., Jiang, M. et al. Different orientations of molecular water on neutral and charged aluminium clusters Al17 (n = 0–3). Eur. Phys. J. D 67, 194 (2013). https://doi.org/10.1140/epjd/e2013-40013-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40013-x

Keywords

Navigation