Skip to main content
Log in

A comparative spectroscopic study of the excited electronic states of potassium-neon and potassium-helium systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Configuration interaction studies have revealed the unexplored excited – state properties of potassium-neon and potassium-helium systems. In contrast to KHe, no potential barrier has been found in the lowest excited spin-orbit (12Π1/2) state of KNe. However, a small barrier of height 2 cm-1 and width 1.9 Åhave been predicted for the 12Π u,1/2state of the triatomic Ne-K-Ne system. Both spin-orbit components (12Π1/2, 3/2) of the diatomic and triatomic systems of potassium-neon are characterized by low binding energy values. Radiative lifetimes of these states are almost 10 ns lower than that of potassium-helium systems. Their high-lying excited states are having better binding energy values, especially, that of the triatomic ones, while huge barriers are only noticed in the high-energy 2Σ+ states. Stable exciplexes can be expected to form with respect to the two energetically similar excited states of 2Δ and 2Π symmetries. They are having radiative lifetimes of 25 ns and involved in important transitions to the 12Π state. This may eventually lead to the12Π -X2Σ+ emission near 13 330 cm-1 for KNe (12 900 cm-1 for Ne-K-Ne), which is on the lower wavelength side in comparison to potassium-helium systems. Their low-lying repulsive excited states can trigger the pumping of the blue-side and the red-side of the n s 2S1/2 → n p 2P3/2 transition, and this may ultimately give rise to the n p 2P1/2 → n s 2S1/2 lasing transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Readle, C.J. Wagner, J.T. Verdeyen, D.L. Carroll, J.G. Eden, Electron. Lett. 44, 1466 (2008)

    Article  Google Scholar 

  2. J.D. Readle, C.J. Wagner, J.T. Verdeven, D.L. Carroll, J.G. Eden, Proc. SPIE 7196, 71960D (2009)

    Article  ADS  Google Scholar 

  3. J.D. Readle, C.J. Wagner, J.T. Verdeyen, T.M. Spinka, D.L. Carroll, J.G. Eden, Proc. SPIE 7581, 75810K (2010)

    Article  ADS  Google Scholar 

  4. A.D. Palla, D.L. Carroll, J.T. Verdeyen, J.D. Readle, T.M. Spinka, C.J. Wagner, J.G. Eden, M.C. Heaven, Proc. SPIE 7581, 75810L (2010)

    Article  ADS  Google Scholar 

  5. A. Chattopadhyay, J. Phys. B: At. Mol. Opt. Phys. 45, 035101 (2012)

    Article  ADS  Google Scholar 

  6. A. Chattopadhyay, J. Phys. B: At. Mol. Opt. Phys. 44, 165101 (2011)

    Article  ADS  Google Scholar 

  7. W.E. Baylis, J. Chem. Phys. 51, 2665 (1969)

    Article  ADS  Google Scholar 

  8. J. Pascale, J. Vandeplanque, J. Chem. Phys. 60, 2278 (1974)

    Article  ADS  Google Scholar 

  9. G.H. Purser, J. Chem. Educ. 65, 119 (1988)

    Article  Google Scholar 

  10. M. Delhoume, W.-U.L. Brillet, F. Masnou-Seeuws, N. Feautrier, F. Rostas, J. Phys. B: At. Mol. Phys. 14, 3857 (1981)

    Article  ADS  Google Scholar 

  11. W.-U.L. Tchang-Brillet, A. Spielfiedel, N. Feautrier, D. Hanert, J. Phys. B: At. Mol. Opt. Phys. 22, 3915 (1989)

    Article  ADS  Google Scholar 

  12. F. Masnou-Seeuws, J. Phys. B: At. Mol. Phys. 15, 883 (1982)

    Article  ADS  Google Scholar 

  13. P. Valiron, R. Gayet, R. McCarroll, F. Masnou-Seeuws, M. Philippe, J. Phys. B: At. Mol. Phys. 12, 53 (1979)

    Article  ADS  Google Scholar 

  14. A. Spielfiedel, N. Feautrier, J. Phys. B: At. Mol. Opt. Phys. 22, 3227 (1989)

    Article  ADS  Google Scholar 

  15. S.H. Patil, J. Chem. Phys. 94, 8089 (1991)

    Article  ADS  Google Scholar 

  16. E. Goll, H.-J. Werner, H. Stoll, T. Leininger, P. Gori-Giorgi, A. Savin, Chem. Phys. 329, 276 (2006)

    Article  ADS  Google Scholar 

  17. E. Czuchaj, F. Rebentrost, H. Stoll, H. Preuss, Chem. Phys. 136, 79 (1989)

    Article  ADS  Google Scholar 

  18. D. Zanuttini, E. Jacquet, E. Giglio, J. Douady, B. Gervais, J. Chem. Phys. 131, 214104 (2009)

    Article  ADS  Google Scholar 

  19. B. Brooks, H.F. Schaefer, J. Chem. Phys. 70, 5092 (1979)

    Article  ADS  Google Scholar 

  20. B. Brooks, W. Laidig, P. Saxe, N. Handy, H.F. Schaefer, Phys. Scr. 21, 312 (1980)

    Article  ADS  Google Scholar 

  21. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  22. F. Weinhold, J. Chem. Phys. 54, 1874 (1970)

    Article  ADS  Google Scholar 

  23. C.W. Bauschlicher, S.R. Langhoff, Theor. Chim. Acta 79, 93 (1991)

    Article  Google Scholar 

  24. S. Koseki, M.S. Gordon, J. Mol. Spectrosc. 123, 392 (1987)

    Article  ADS  Google Scholar 

  25. S.T. Elbert, Theor. Chim. Acta 71, 169 (1987)

    Article  Google Scholar 

  26. E.R. Davidson, J. Comput. Phys. 17, 87 (1975)

    Article  ADS  MATH  Google Scholar 

  27. S. Koseki, M.W. Schmidt, M.S. Gordon, J. Phys. Chem. 96, 10768 (1992)

    Article  Google Scholar 

  28. S. Koseki, M.S. Gordon, M.W. Schmidt, N. Matsunaga, J. Phys. Chem. 99, 12764 (1995)

    Article  Google Scholar 

  29. N. Matsunaga, S. Koseki, M.S. Gordon, J. Chem. Phys. 104, 7988 (1996)

    Article  ADS  Google Scholar 

  30. S. Koseki, M.W. Schmidt, M.S. Gordon, J. Phys. Chem. A 102, 10430 (1998)

    Article  Google Scholar 

  31. S. Koseki, D.G. Fedorov, M.W. Schmidt, M.S. Gordon, J. Phys. Chem. A 105, 8262 (2001)

    Article  Google Scholar 

  32. S. Koseki, Y. Ishihara, H. Umeda, D.G. Fedorov, M.S. Gordon, J. Phys. Chem. A 106, 785 (2002)

    Article  Google Scholar 

  33. D.G. Fedorov, S. Koseki, M.W. Schmidt, M.S. Gordon, Int. Rev. Phys. Chem. 22, 551 (2003)

    Article  Google Scholar 

  34. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  35. C. Corliss, J. Sugar, J. Phys. Chem. Ref. Data 8, 1109 (1979)

    Article  ADS  Google Scholar 

  36. R. Düren, E. Hasselbrink, H. Tischer, J. Chem. Phys. 71, 3286 (1982)

    Article  Google Scholar 

  37. S. Grimme, P.R. Schreiner, Angew. Chem. Int. Ed. 50, 12639 (2011)

    Article  Google Scholar 

  38. P. Pyykkö, P. Zaleski-Ejgierd, J. Chem. Phys. 128, 124309 (2008)

    Article  ADS  Google Scholar 

  39. D. Rappoport, F. Furche, J. Chem. Phys. 133, 134105 (2010)

    Article  ADS  Google Scholar 

  40. A. Monari, G.L. Bendazzoli, S. Evangelisti, C. Angeli, N.B. Amor, S. Borini, D. Maynau, E. Rossi, J. Chem. Theory Comput. 3, 477 (2007)

    Article  Google Scholar 

  41. J.N. Byrd, R. Côté, J.A. Montgomery, J. Chem. Phys. 135, 244307 (2011)

    Article  ADS  Google Scholar 

  42. S. Höfener, W. Klopper, in Explicitly Correlated Wavefunctions, edited by E.A.G. Armour, J. Franz, J. Tennyson (Daresbury Laboratory, Daresbury, Warrington, 2006), p. 56

  43. F. Bokelmann, D. Zimmermann, J. Chem. Phys. 104, 923 (1996)

    Article  ADS  Google Scholar 

  44. M.B. El Hadj Rhouma, H. Berriche, Z.B. Lakhdar, F. Spiegelman, J. Chem. Phys. 116, 1839 (2002)

    Article  ADS  Google Scholar 

  45. B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, R.J. Knize, Opt. Commun. 270, 353 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, A. A comparative spectroscopic study of the excited electronic states of potassium-neon and potassium-helium systems. Eur. Phys. J. D 66, 325 (2012). https://doi.org/10.1140/epjd/e2012-30495-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30495-3

Keywords

Navigation