Skip to main content
Log in

Atomistic simulation on the shape dependence of the melting behavior of V nanowire

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The modified analytical embedded atom method (MAEAM) has been used to study the cross-sectional shape dependence of the melting of vanadium nanowire (NW). The results indicate that the effect of the shape on the melting behavior is apparent. For the prefect crystal, the calculated thermodynamic properties including the melting temperature and the latent heat of melting, which are evidently higher than those of the NWs, are in good agreement with the previously corresponding value. For NWs, by monitoring the temperature dependence of the potential energy and heat capacity, the melting temperature of Tr-, Te-, and Cr-NW has been accurately determined to be 1730 K, 1790 K, and 1760 K, respectively. The melting temperature discrepancy of NWs predicates that the shape effect is prominent. On the basis of the obtained melting point of NW, we study the temperature dependence of the atomic fraction of all shells to explore the effect of cross-sectional shape on the melting behavior. Compared with the melting transition of three NWs, it is found that the melting behavior of triangular nanowire (Tr-NW) with the relatively larger shape factor is significantly different from that of other shape NW. Finally, the cross-sectional shape dependent melting mechanism of NWs is further studied by displaying the atomic snapshots at some given temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, C. Qin, L.B.H. Hong, S.C. Bae, S.Y. Youn, K.S. Kim, Science 296, 611 (2002)

    Article  Google Scholar 

  2. G.A. Gelves, B. Lin, U. Sundararaj, J.A. Haber, Adv. Funct. Mater. 16, 2423 (2006)

    Article  Google Scholar 

  3. M. Zhao, Q. Jiang, Key Eng. Mater. 444, 189 (2010)

    Article  Google Scholar 

  4. K.C. Schwab, M.L. Roukes, Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  5. F. Patosky, B.P. Timko, G. Zheng, C.M. Lieber, MRS Bull. 32, 142 (2007)

    Article  Google Scholar 

  6. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Phys. Rev. Lett. 96, 075505 (2006)

    Article  ADS  Google Scholar 

  7. Y.G. Zhu, X.C. Dou, X.H. Huang, L. Li, G.H. Li, J. Phys. Chem. B 110, 26189 (2006)

    Article  Google Scholar 

  8. H.S. Shin, J. Yu, J.Y. Song, Appl. Phys. Lett. 91, 173106 (2007)

    Article  ADS  Google Scholar 

  9. W.H. Qi, Physica B 368, 46 (2005)

    Article  ADS  Google Scholar 

  10. L. Miao, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 72, 134109 (2005)

    Article  ADS  Google Scholar 

  11. G. Abudukelimu, G. Guisbiers, M. Wautelet, J. Mater. Res. 21, 2829 (2006)

    Article  ADS  Google Scholar 

  12. Y. Zhang, Y.H. Wen, J.C. Zheng, Z.Z. Zhu, Phys. Lett. A 373, 3454 (2009)

    Article  ADS  Google Scholar 

  13. W.X. Zhang, C. He, J. Phys. Chem. C 114, 8717 (2010)

    Article  Google Scholar 

  14. H. Li, B.L. Wang, J.L. Wang, G.H. Wang, J. Chem. Phys. 120, 3431 (2004)

    Article  ADS  Google Scholar 

  15. Z. Ao, Q. Jiang, Langmuir 22, 1241 (2006)

    Article  Google Scholar 

  16. G. Guisbiers, S. Pereira, Nanotechnology 18, 435710 (2007)

    Article  ADS  Google Scholar 

  17. W.Y. Hu, S.F. Xiao, J.Y. Yang, Z. Zhang, Eur. Phys. J. B 45, 547 (2005)

    Article  ADS  Google Scholar 

  18. W.H. Qi, S.T. Li, J. Phys. Chem. C 114, 9580 (2010)

    Article  Google Scholar 

  19. Q.S. Mei, K. Lu, Prog. Mater. Sci. 52, 1175 (2007)

    Article  Google Scholar 

  20. K. Kang, S.J. Qin, C.L. Wang, Physica E 41, 817 (2009)

    Article  ADS  Google Scholar 

  21. M. Allione, R. Kofman, F. Celestini, Y. Lereah, Eur. Phys. J. D 52, 207 (2009)

    Article  ADS  Google Scholar 

  22. Y.J. Li, W.H. Qi, B.Y. Huang, M.P. Wang, S.Y. Xiong, Mod. Phys. Lett. B 24, 2345 (2010)

    Article  ADS  MATH  Google Scholar 

  23. H. Li, B.L. Wang, J.L. Wang, G.H. Wang, J. Chem. Phys. 121, 8990 (2004)

    Article  ADS  Google Scholar 

  24. A.S. Barnard, L.A. Curtiss, J. Mater. Chem. 17, 3315 (2007)

    Article  Google Scholar 

  25. Y.H. Wen, H. Fang, Z.Z. Zhu, S.G. Sun, Phys. Lett. A 373, 272 (2009)

    Article  ADS  Google Scholar 

  26. W.H. Qi, M.P. Wang, Mater. Chem. Phys. 88, 280 (2004)

    Article  Google Scholar 

  27. J.F. Tang, W.Y. Hu, J.Y. Yang, Y.R. Wu, Appl. Surf. Sci. 254, 1475 (2007)

    Article  ADS  Google Scholar 

  28. W.Y. Hu, H.Q. Deng, X.J. Yuan, M. Fukumoto, Eur. Phys. J. B 34, 429 (2003)

    Article  ADS  Google Scholar 

  29. Z. Zhang, W.Y. Hu, S.F. Xiao, J. Chem. Phys. 122, 214501 (2005)

    Article  ADS  Google Scholar 

  30. W.H. Luo, W.Y. Hu, S.F. Xiao, J. Chem. Phys. 128, 074710 (2008)

    Article  ADS  Google Scholar 

  31. S. Nose, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  32. W. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  33. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7128 (1981)

    Article  Google Scholar 

  34. D.R. Lide, Handbook of Chemistry and Physics, 81st edn. (CRC Press, 2000-2001)

  35. W.H. Qi, B.Y. Huang, M.P. Wang, Z.M. Yin, J. Li, Physica B 403, 2386 (2008)

    Article  ADS  Google Scholar 

  36. L.S. Pan, H.P. Lee, C. Lu, Eur. Phys. J. D 50, 27 (2008)

    Article  ADS  Google Scholar 

  37. S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Phys. Rev. B 74, 155441 (2006)

    Article  ADS  Google Scholar 

  38. J.J. Hoyt, D. Olmsted, S. Jindal, M. Asta, A. Karma, Phys. Rev. E 79, 020601 (2009)

    Article  ADS  Google Scholar 

  39. Y. Wang, S. Teitel, J. Chem. Phys. 122, 214722 (2005)

    Article  ADS  Google Scholar 

  40. Y.H. Wen, Y. Zhang, J.C. Zheng, Z.Z. Zhu, S.G. Sun, J. Phys. Chem. C 113, 20611 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.Y., Chen, X.J. Atomistic simulation on the shape dependence of the melting behavior of V nanowire. Eur. Phys. J. D 66, 128 (2012). https://doi.org/10.1140/epjd/e2012-20721-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20721-5

Keywords

Navigation