Skip to main content
Log in

Steady-state multiple dark photovoltaic spatial solitons

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically study the formation of the steady state multiple dark photovoltaic spatial solitons in the photovoltaic photorefractive crystal under open-circuit conditions. The results indicate that the initial dark notch width at the entrance face of the crystal is a key parameter for generating an even (or odd) number sequence of multiple dark photovoltaic solitons. The dark notch is generated from a phase or amplitude discontinuity in the center of the input beam. If the initial width of the dark notch is small, only a fundamental soliton or a Y-junction soliton is generated. As the initial width of the dark notch is increased, the dark notch tends to split into an odd (or even) number of multiple dark photovoltaic solitons, realizing a progressive transition from a lower-order soliton to the higher-order multiple solitons. When the multiple dark photovoltaic solitons are generated, the separations between adjacent dark solitons become smaller. Solitons pairs become progressively wider and less visible as their transverse distance from the central dark soliton increases and they move away from each other as they propagate in the photorefractive nonlinear crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. DelRe, B. Crosignani, P.D. Porto, Photorefractive spatial solitons, Spatial Solitons (Springer Series in Optical Sciences, 2001), Vol. 82, Chap. IV, pp. 61–86

  2. E. DelRe, M. Segev, Self-focusing and solitons in photorefractive media, in Topics in Applied Physics (Springer, Berlin, 2009), Vol. 114, pp. 547–572

  3. W. Królikowski, B.L. Davies, C. Denz, IEEE J. Quantum Electron. 39, 3 (2003)

    Article  ADS  Google Scholar 

  4. D. Kip, C. Herden, M. Wesner, Ferroelectrics 274, 135 (2002)

    Google Scholar 

  5. A. Guo et al., Opt. Lett. 26, 1274 (2001)

    Article  ADS  Google Scholar 

  6. Y. Lu et al., J. Opt. Soc. Am. B 21, 1674 (2004)

    Article  ADS  Google Scholar 

  7. M. Asaro et al., Opt. Lett. 30, 519 (2005)

    Article  ADS  Google Scholar 

  8. R. Jäger et al., Appl. Phys. Lett. 88, 061117 (2006)

    Article  ADS  Google Scholar 

  9. N.K. Efremidis et al., Phys. Rev. E 66, 046602 (2002)

    Article  ADS  Google Scholar 

  10. N. Fressengeas et al., Opt. Commun. 145, 393 (1998)

    Article  ADS  Google Scholar 

  11. M. Taya et al., Phys. Rev. A 52, 3095 (1995)

    Article  ADS  Google Scholar 

  12. M. Taya et al., Opt. Lett. 21, 943 (1996)

    Article  ADS  Google Scholar 

  13. G.Q. Zhang et al., Chin. Phys. Lett. 13, 101 (1996)

    Article  ADS  Google Scholar 

  14. G.C. Valley et al., Phys. Rev. A 50, R4457 (1994)

    Article  ADS  Google Scholar 

  15. M. Segev et al., J. Opt. Soc. Am. B 14, 1772 (1997)

    Article  ADS  Google Scholar 

  16. M. Chauvet, J. Opt. Soc. Am. B 20, 2515 (2003)

    Article  ADS  Google Scholar 

  17. G. Coutuon, H. Maillotte, M. Chauvet, J. Opt. B: Quantum Semiclass. Opt. 6, S223 (2004)

    Article  ADS  Google Scholar 

  18. M. Bodnar, Proc. SPIE 6582, 65821P (2007)

    Article  ADS  Google Scholar 

  19. Z.G. Chen, M. Mitchell, M. Segev, Opt. Lett. 21, 716 (1996)

    Article  ADS  Google Scholar 

  20. Z.G. Chen et al., J. Opt. Soc. Am. B 14, 1407 (1997)

    Article  ADS  Google Scholar 

  21. Z.G. Chen, M. Segev, Proc. SPIE 2896, 148 (1996)

    Article  ADS  Google Scholar 

  22. M.M. Méndez-Otero et al., Opt. Commun. 193, 277 (2001)

    Article  ADS  Google Scholar 

  23. Y.Q. Zhang et al., Chin. Phys. Lett. 26, 034212 (2009)

    Article  ADS  Google Scholar 

  24. K.Q. Lu et al., Opt. Mater. 32, 561 (2010)

    Article  ADS  Google Scholar 

  25. K.Q. Lu et al., Opt. Commun. 282, 3335 (2009)

    Article  ADS  Google Scholar 

  26. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 37, 823 (1973)

    ADS  Google Scholar 

  27. K.J. Blow, N.J. Doran, Phys. Lett. A 107, 55 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. S.R. Skinner et al., IEEE J. Quantum Electron. 27, 2211 (1991)

    Article  ADS  Google Scholar 

  29. B. Luther-Davies, X.P. Yang, Opt. Lett. 17, 496 (1992)

    Article  ADS  Google Scholar 

  30. K.Q. Lu et al., Opt. Quantum Electron. 42, 277 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.H., Lu, K.Q., Guo, J.B. et al. Steady-state multiple dark photovoltaic spatial solitons. Eur. Phys. J. D 66, 65 (2012). https://doi.org/10.1140/epjd/e2012-20560-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20560-4

Keywords

Navigation